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P1. (6.0 ptos.) Encuentre los valores extremos de la función

f(x, y, z) = x2 + y2 + z2,

sujeta a las restricciones {
x2 − xy + y2 − z2 = 1,

x2 + y2 = 1.

En cada caso, identifique el valor extremo correspondiente y justifique el método utilizado.

Solución: Consideramos el Lagrangiano dado por

L(x, y, z, λ1, λ2) = x2 + y2 + z2 − λ1 (x
2 − xy + y2 − z2 − 1)− λ2 (x

2 + y2 − 1).

(0.5 pts; Escritura correcta de L con las dos restricciones)

Los puntos cŕıticos se obtienen resolviendo el sistema

∇L = 0,

es decir 

∂L
∂x

= 2x− 2λ1x+ λ1y − 2λ2x = 0,

∂L
∂y

= 2y − 2λ1y + λ1x− 2λ2y = 0,

∂L
∂z

= 2z + 2λ1z = 0,

∂L
∂λ1

= −(x2 − xy + y2 − z2 − 1) = 0,

∂L
∂λ2

= −(x2 + y2 − 1) = 0.

(0.5 pts; Cálculo correcto de las 5 ecuaciones)

De la tercera ecuación se obtiene
2z(1 + λ1) = 0,

por lo que distinguimos dos casos.

Caso 1: z = 0.

En este caso, las dos últimas ecuaciones se reducen a

x2 − xy + y2 = 1, x2 + y2 = 1.

Restando ambas ecuaciones se obtiene

−xy = 0 =⇒ xy = 0.

Por tanto, o bien x = 0 o bien y = 0.

Si x = 0, de x2 + y2 = 1 se deduce y = ±1.
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Si y = 0, de x2 + y2 = 1 se deduce x = ±1.

En ambos subcasos, al sustituir en las dos primeras ecuaciones se obtiene λ1 = 0 y λ2 = 1. Aśı, los puntos
cŕıticos correspondientes (incluyendo multiplicadores) son

(0, 1, 0, 0, 1), (0,−1, 0, 0, 1), (1, 0, 0, 0, 1), (−1, 0, 0, 0, 1),

y, a nivel de la función f , los puntos

(0, 1, 0), (0,−1, 0), (1, 0, 0), (−1, 0, 0).

(2.0 pts; Uso correcto de las restricciones y hallazgo de los 4 puntos)

Caso 2: λ1 = −1.

Sustituyendo λ1 = −1 en las dos primeras ecuaciones,

∂L
∂x

= 0 =⇒ 2x+ 2x+ y − 2λ2x = 0 =⇒ (4− 2λ2)x+ y = 0,

∂L
∂y

= 0 =⇒ 2y + 2y + x− 2λ2y = 0 =⇒ (4− 2λ2)y + x = 0.

Suponiendo x ̸= 0 y y ̸= 0, podemos despejar

y = −(4− 2λ2)x, x = −(4− 2λ2)y.

Multiplicando ambas expresiones se obtiene

xy = (4− 2λ2)
2xy.

Como xy ̸= 0 en este caso, deducimos

(4− 2λ2)
2 = 1 =⇒ 4− 2λ2 = ±1.

De aqúı se obtienen los posibles valores de λ2, pero no es necesario determinarlos expĺıcitamente para
encontrar (x, y, z). Es más conveniente usar directamente las restricciones.

De las restricciones
x2 + y2 = 1, x2 − xy + y2 − z2 = 1,

sustituyendo z2 desde la segunda,
z2 = x2 − xy + y2 − 1.

Restando la primera ecuación de esta expresión se obtiene

z2 = −xy.

Puesto que z2 ≥ 0, esto implica xy ≤ 0. Además, de la igualdad de expresiones para λ2 (por ejemplo, a
partir de la forma original de las ecuaciones) se deduce x2 = y2, es decir,

x2 = y2 =
1

2
=⇒ x = ± 1√

2
, y = ± 1√

2
.

La condición xy ≤ 0 obliga a tomar signos opuestos en x e y, de modo que

(x, y) ∈
{(

1√
2
,− 1√

2

)
,

(
− 1√

2
,
1√
2

)}
.
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Finalmente, usando z2 = −xy = 1
2 , se tiene

z = ± 1√
2
.

Por tanto, obtenemos cuatro puntos cŕıticos adicionales:(
1√
2
,− 1√

2
,± 1√

2

)
,

(
− 1√

2
,
1√
2
,± 1√

2

)
,

con λ1 = −1 y λ2 = 5
2 .

(2.0 pts; Resolución del sistema y hallazgo de los 4 puntos)

Evaluación de f y clasificación de extremos.

La función a optimizar es f(x, y, z) = x2 + y2 + z2. Evaluamos en los puntos cŕıticos:

f(0,±1, 0) = 02 + 12 + 02 = 1,

f(±1, 0, 0) = 12 + 02 + 02 = 1,

f

(
1√
2
,− 1√

2
,± 1√

2

)
=

(
1√
2

)2

+

(
− 1√

2

)2

+

(
± 1√

2

)2

=
3

2
,

f

(
− 1√

2
,
1√
2
,± 1√

2

)
=

(
− 1√

2

)2

+

(
1√
2

)2

+

(
± 1√

2

)2

=
3

2
.

Las restricciones describen un conjunto compacto (la intersección de la esfera x2 + y2 = 1 con un cilindro
cuadrático en (x, y, z)), por lo que f alcanza en él sus extremos absolutos. Comparando los valores obtenidos,
concluimos:

Los puntos
(0,±1, 0), (±1, 0, 0)

son puntos de mı́nimo absoluto, con valor f = 1.

Los puntos (
1√
2
,− 1√

2
,± 1√

2

)
,

(
− 1√

2
,
1√
2
,± 1√

2

)
son puntos de máximo absoluto, con valor f =

3

2
.

(1.0 pts; Valores f = 1 y f = 3
2 y clasificación de extremos absolutos)

P2. (6.0 ptos.) Considere la región

D =
{
(x, y) ∈ R2

∣∣ xy ≤ 16, x ≥ y, x− 6 ≤ y, x ≥ 0, y ≥ 1
}
.

a) (2.0 ptos.) Dibuje la región D indicando claramente todas las curvas que la delimitan.

Solución:
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(2.0 pts; Por graficar correctamente la figura indicando cada una de las curvas)

b) (4.0 ptos.) Calcule, utilizando coordenadas cartesianas, la integral doble∫∫
D

x

y
dx dy.

Justifique adecuadamente los ĺımites de integración que utilice.

Solución: Para calcular la integral, describimos la región D proyectándola sobre el eje y y tomando x
como variable dependiente. De acuerdo con el esquema de la figura, conviene descomponer

D = D1 ∪D2,

donde

D1 =
{
(x, y) ∈ R2 : y ≤ x ≤ y + 6, 1 ≤ y ≤ 2

}
, D2 =

{
(x, y) ∈ R2 : y ≤ x ≤ 16

y
, 2 ≤ y ≤ 4

}
.

(1.0 pts; Descripción correcta de D1, D2 y rangos de y)

De este modo, la integral se escribe como∫∫
D

x

y
dx dy =

∫∫
D1

x

y
dx dy +

∫∫
D2

x

y
dx dy.
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Cálculo sobre D1. Para D1 se tiene∫∫
D1

x

y
dx dy =

∫ 2

y=1

∫ y+6

x=y

x

y
dx dy.

Calculamos primero la integral interna:∫ y+6

x=y

x

y
dx =

1

y

∫ y+6

x=y

x dx =
1

y

[
x2

2

]x=y+6

x=y

=
(y + 6)2 − y2

2y
=

12y + 36

2y
= 6 +

18

y
.

Por tanto,∫∫
D1

x

y
dx dy =

∫ 2

1

(
6 +

18

y

)
dy = [6y + 18 ln |y|]21 = (12 + 18 ln 2)− (6 + 18 ln 1) = 6 + 18 ln 2.

(1.0 pts; Por calcular bien la integral defiendo correctamente los ĺımites de integración)

Cálculo sobre D2. Para D2 escribimos∫∫
D2

x

y
dx dy =

∫ 4

y=2

∫ 16
y

x=y

x

y
dx dy.

La integral interna queda∫ 16/y

x=y

x

y
dx =

1

y

∫ 16/y

x=y

x dx =
1

y

[
x2

2

]x=16/y

x=y

=
1

2y

(
256

y2
− y2

)
=

128

y3
− y

2
.

Entonces ∫∫
D2

x

y
dx dy =

∫ 4

2

(
128

y3
− y

2

)
dy =

[
−64

y2
− y2

4

]4
2

.

Evaluando,

−64

42
− 42

4
= −4− 4 = −8, −64

22
− 22

4
= −16− 1 = −17,

por lo que ∫∫
D2

x

y
dx dy = (−8)− (−17) = 9.

(1.0 pts; Por calcular bien la integral defiendo correctamente los ĺımites de integración)

Sumando las dos contribuciones,∫∫
D

x

y
dx dy =

∫∫
D1

x

y
dx dy +

∫∫
D2

x

y
dx dy = (6 + 18 ln 2) + 9 = 15 + 18 ln 2.

(1.0 pts; Resultado numérico correcto)

P3. (6.0 ptos.) Determine el volumen del sólido ubicado en el primer octante y delimitado por las superficies
z = 1− y2,

y = 2x,

x = 3.
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Solución: Como se pide el volumen del sólido, debemos calcular

V =

∫∫∫
D

1 dV,

donde D es la región en el espacio delimitada por las superficies dadas y el primer octante (x ≥ 0, y ≥
0, z ≥ 0).

(0.5 pts; Uso del primer octante y de la definición de volumen)

Determinemos los ĺımites de integración. La superficie superior viene dada por

z = 1− y2,

y en el primer octante tenemos z ≥ 0, por lo que

1− y2 ≥ 0 =⇒ 0 ≤ y ≤ 1.

(1.0 pts; Intervalo adecuado para y )

Para cada valor fijo de y en este intervalo, z vaŕıa entre el plano z = 0 y la superficie z = 1− y2, es decir:

0 ≤ z ≤ 1− y2.

(1.0 pts; Intervalo adecuado para z en función de y)

Las otras dos superficies son

y = 2x ⇐⇒ x =
y

2
, x = 3.

En el primer octante y para 0 ≤ y ≤ 1, esto implica que, para cada y fijo,

y

2
≤ x ≤ 3.

(1.0 pts; Uso correcto de las superficies laterales)

En resumen, una descripción conveniente de D es

D =

{
(x, y, z)

∣∣∣∣ 0 ≤ y ≤ 1,
y

2
≤ x ≤ 3, 0 ≤ z ≤ 1− y2

}
.

(1.0 pts; Determinación de los ĺımites de integración)
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Ahora, calculemos el volumen. Con la elección de orden dz dx dy, el volumen es

V =

∫∫∫
D

1 dV =

∫ 1

y=0

∫ 3

x=y/2

∫ 1−y2

z=0

1 dz dx dy.

=

∫ 1

0

∫ 3

y/2

[
(z)

]1−y2

0
dx dy

=

∫ 1

0

∫ 3

y/2

(1− y2) dx dy.

=

∫ 1

0

(1− y2) [x]
x=3
x=y/2 dy

=

∫ 1

0

(1− y2)
(
3− y

2

)
dy.

=

∫ 1

0

(
3− 3y2 − y

2
+

y3

2

)
dy.

=

[
3y − y3 − y2

4
+

y4

8

]1
0

= 3− 1− 1

4
+

1

8

=
15

8
.

(1.5 pts; Cálculo algebraico y resultado correcto)

Duración: 3h.
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