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P1

Determine si las siguientes series convergen o divergen, explicitando el criterio utilizado [1 pto c/u]
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5. E ( ) R: Converge por criterio de raiz n-ésima.
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P2

= k—1)!
# con 0 < a < 1. R: Diverge por criterio del cuociente.

k=1 Hj:1(1 + 0‘\[])
VA

O av) v 1 |

(k—1)! I+avk+1 14, /141 koo «a
k : vk i
Hj:l(l + /)

oo oo

. Sea (a, )nen una sucesion de términos positivos tal que aj, converge. Demuestre que a? converge.
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R: Como la serie converge klim ar = 0, luego existe kg tal que Vk > kg. 0 < ai < 1, luego ai <ag 1
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pto] y por mayoracién la serie Z a? converge [1 pto).
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Demuestre que la integral impropia / sin(z) converge, pero que / sin(z) diverge. [2 pts].
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0.3 pts] [ €2Zdx converge absolutamente, luego converge [0.5 pto],y Nlim &]S,) = 0, luego La serie
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converge [0.2 pts]. Para ver que no converge absolutamente
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[0.5 pto] Veamos cuanto vale la integral:
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Luego podemos minorar por una serie armoénica y por tanto la integral diverge. [0.5 pto]
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Demuestre que la integral impropia / —, converge. [2 pts]. R: Notar que f es positiva y decreciente
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[0.6 pto] Luego la integral converge si y solo Z % converge [0.8 pto.

k=1
Y usando el criterio de raiz k—ésima vemos que la serie converge.
ok

lim {/— = lim

k—o0 k}k k—oc0 E =0

[0.6 pto]

(13)



