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P1

Determine si las siguientes series convergen o divergen, explicitando el criterio utilizado [1 pto c/u]:
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R: Converge por mayoración
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R: Converge por criterio de ráız k-ésima.
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R: Diverge por minoración.
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R: Converge absolutamente:
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R: Converge por criterio de ráız n-ésima.
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6.

∞∑
k=1

√
(k − 1)!∏k

j=1(1 + α
√
j)

con 0 < α < 1. R: Diverge por criterio del cuociente.
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P2

1. Sea (an)n∈N una sucesión de términos positivos tal que

∞∑
k=1

ak converge. Demuestre que

∞∑
k=1

a2k converge.

[2 pts].

R: Como la serie converge lim
k→∞

ak = 0, luego existe k0 tal que ∀k ≥ k0. 0 ≤ ak ≤ 1, luego a2k < ak [1

pto] y por mayoración la serie

∞∑
k=1

a2k converge [1 pto].

2. Demuestre que la integral impropia

∫ ∞
1
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x
converge, pero que

∫ ∞
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∣∣∣∣ diverge. [2 pts].

R: ∫ N
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[0.3 pts]
N∫
1

cos x
x2 dx converge absolutamente, luego converge [0.5 pto],y lim

N→∞
cos(N)
N = 0, luego La serie

converge [0.2 pts]. Para ver que no converge absolutamente∫ 2Nπ
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[0.5 pto] Veamos cuanto vale la integral:
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Luego podemos minorar (8) por una serie armónica y por tanto la integral diverge. [0.5 pto]

3. Demuestre que la integral impropia

∫ ∞
1

ey

yy
converge. [2 pts]. R: Notar que f es positiva y decreciente

si y > 1:

f ′(y) =
exp(y) exp(y ln(y))− exp(y ln(y))(ln(y) + 1)

exp(y ln(y))2
(11)

= −exp(y) exp(y ln(y)) ln(y)

exp(y ln(y))2
< 0 (12)
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[0.6 pto] Luego la integral converge si y solo

∞∑
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converge [0.8 pto].

Y usando el criterio de ráız k−ésima vemos que la serie converge.
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[0.6 pto]
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