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Pauta de corrección Control 2

P1. a) (3,0 pts.) Calcule la siguiente primitiva ∫
3
√
x

x(
√
x+ 3

√
x)

dx.

Indicación: Puede usar el cambio de variable x = u6.

Solución

Usando el cambio de variable

x = u6,

(0,2 pts. por usar el cambio de variable dado en la indicación)
vamos a tener que dx = 6u5 du. Luego, la primitiva queda

∫
3
√
x

x(
√
x+ 3

√
x)

dx = 6

∫
1

u(u+ 1)
du. (1)

(0,7 pts. por realizar la sustitución de manera correcta)
Ahora, se usará el método de fracciones parciales para separar esta primitiva como una suma. Se plantea la
siguiente ecuación:

1

u(u+ 1)
=

A

u
+

B

u+ 1
=

A(u+ 1) +Bu

u(u+ 1)
,

(0,4 pts. por usar el método de fracciones parciales)
de donde resulta la siguiente igualdad

A(u+ 1) +Bu = 1. (2)

(0,3 pts. por obtener la ecuación que relaciona las constantes A y B)
Para encontrar A y B se pueden usar los siguientes métodos:

Primera forma (Igualando coeficientes)

De la igualdad (2) resulta que (A + B)u + A = 1. Como esta es una igualdad de polinomios, debe ser
válida para todos los coeficientes. De aqúı se obtiene el sistema de ecuaciones

A+B = 0

A = 1.

Como A = 1 sustituyendo en la primera ecuación, resulta que B = −1.
(0,3 pts. por obtener los valores de A y B)

Segunda forma (Evaluando)

Como (2) es una igualdad de polinomios, es válida evaluando en cualquier u ∈ R (o incluso u ∈ C).
Evaluando (por ejemplo) en u = −1 y en u = 0 se obtiene el sistema de ecuaciones

−B = 1

A = 1

de donde se concluye que A = 1 y B = −1.
(0,3 pts. por obtener los valores de A y B)



Volviendo a (1), se obtiene de este modo que∫
3
√
x

x(
√
x+ 3

√
x)

dx = 6

(∫
1

u
du−

∫
1

u+ 1
du

)
= 6 (ln |u| − ln |u+ 1|) + C.

(0,7 pts. por calcular la primitiva)
Finalmente, volviendo a la variable original queda∫

3
√
x

x(
√
x+ 3

√
x)

dx = 6
(
ln
(

6
√
x
)
− ln

(
6
√
x+ 1

))
+ C.

(0,4 pts. por dejar la primitiva en términos de la variable original)

Indicaciones de corrección

Es probable que la resolución entregada no sea tan detallada como la pauta y se reduzca a un cálculo
en un par de ĺıneas. En dicho caso lo importante es que se describa el proceso de manera clara y que se
llegue al resultado correcto al ser coherente con su desarrollo.

Restar (0.1 pts.) sino escriben la constante de la primitiva.

b) (3,0 pts.) Calcule la siguiente integral ∫ 3

1

x+ 2√
4x− x2

dx.

Indicación: Puede usar que
√
4x− x2 =

√
4− (x− 2)2.

2



Solución

Cálculo de la integral definida en cada paso

Denotemos por I el valor de la integral solicitada. Primero consideramos el cambio de variables u = x−2,
luego du = dx y por tanto u = −1 cuando x = 1 y u = 1 cuando x = 3, de esta forma

I =

∫ 1

−1

u+ 4√
4− u2

du.

(1 pt.)
Ahora separamos la integral

I =

∫ 1

−1

u√
4− u2

du+ 4

∫ 1

−1

1√
4− u2

du.

La primera integral tiene integrando impar sobre un intervalo simétrico al rededor del origen, por lo
tanto: ∫ 1

−1

u√
4− u2

du = 0.

(1 pt.)
La segunda integral es conocida: ∫

du√
4− u2

= arcsin
(u
2

)
,

(0,5 pts.)
entonces

4

∫ 1

−1

du√
4− u2

= 4
[
arcsin

(u
2

)]1
−1

= 4

(
arcsin

1

2
− arcsin

−1

2

)
.

Como arcsin(1/2) = π/6 y arcsin(−1/2) = −π/6, resulta

4
(π
6
−
(
−π

6

))
=

4π

3
.

En resumen ∫ 3

1

x+ 2√
4x− x2

dx =
4π

3
.

(0,5 pts.)

Indicaciones de corrección

La integral ∫ 1

−1

u√
4− u2

du

también se puede calcular con sustitución: Sea w = 4− u2, entonces dw = −2u du, por lo que u du =
− 1

2 dw. Además, cuando u = −1 y u = 1, en ambos casos w = 3.∫ 1

−1

u√
4− u2

du =

∫ 3

3

−1

2

1√
w

dw.

Como los ĺımites de integración son iguales, el valor de la integral es cero.
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Cálculo de una primitiva directa y luego evaluar en los extremos de la integral

Primero consideramos el cambio de variables u = x− 2, luego du = dx y por tanto∫
x+ 2√
4x− x2

dx =

∫
u+ 4√
4− u2

du.

(0,6 pts.)
Ahora separamos las integrales∫

u+ 4√
4− u2

du =

∫
u√

4− u2
du+ 4

∫
1√

4− u2
du.

Primera integral: ∫
u√

4− u2
du.

Sea w = 4− u2, entonces dw = −2u du, por lo tanto udu = − 1
2 dw.∫

u√
4− u2

du = −1

2

∫
w−1/2 dw = −1

2
· 2
√
w = −

√
4− u2.

(0,6 pts.)
Segunda integral: ∫

1√
4− u2

du = arcsin
(u
2

)
.

(0,6 pts.)
Combinando los resultados y volviendo a la variable original∫

x+ 2√
4x− x2

dx = −
√
4− (x− 2)2 + 4 arcsin

(
x− 2

2

)
+ C.

(0,6 pts.)
Finalmente, en el caso de la integral definida se tiene∫ 3

1

x+ 2√
4x− x2

dx =

[
−
√
4− (x− 2)2 + 4arcsin

(
x− 2

2

)]∣∣∣∣3
1

= −
√
4− (3− 2)2 + 4arcsin

(
3− 2

2

)
−
(
−
√
4− (1− 2)2 + 4arcsin

(
1− 2

2

))
= −

√
3 + 4

(π
6

)
−
(
−
√
3 + 4

(
−π

6

))
=

4π

3
.

(0,6 pts.)
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Cálculo de una primitiva usando sustitución trigonométrica y luego evaluar en los extremos
de la integral

Primera sustitución: Sea u = x− 2, entonces x = u+ 2 y dx = du. Aśı,∫
x+ 2√
4x− x2

dx =

∫
u+ 4√
4− u2

du.

(0,6 pts.)
Segunda sustitución trigonométrica: Sea u = 2 sen θ (o equivalentemente θ = arcsin

(
u
2

)
) de modo

que du = 2 cos θ dθ y
√
4− u2 = 2 cos θ.∫
u+ 4√
4− u2

du =

∫
2 sen θ + 4

2 cos θ
(2 cos θ dθ) =

∫
(2 sen θ + 4) dθ

∫
(2 sen θ + 4) dθ = −2 cos θ + 4θ + C.

(0,8 pts.)
Volvemos a las variables originales usando las identidades:

cos θ =
√
1− sen2 θ =

√
1−

(u
2

)2
=

√
4− u2

2
.

Se llega a

−2 cos θ + 4θ = −
√

4− u2 + 4 arcsin
(u
2

)
+ C.

(0,4 pts.)
Sustituyendo u = x− 2:∫

x+ 2√
4x− x2

dx = −
√
4− (x− 2)2 + 4arcsin

(
x− 2

2

)
+ C.

(0,6 pts.)
Finalmente, en el caso de la integral definida se tiene∫ 3

1

x+ 2√
4x− x2

dx =

[
−
√
4− (x− 2)2 + 4arcsin

(
x− 2

2

)]∣∣∣∣3
1

= −
√
4− (3− 2)2 + 4arcsin

(
3− 2

2

)
−
(
−
√
4− (1− 2)2 + 4arcsin

(
1− 2

2

))
= −

√
3 + 4

(π
6

)
−
(
−
√
3 + 4

(
−π

6

))
=

4π

3
.

(0,6 pts.)

Indicaciones de corrección

Si un/a estudiante al utilizar la indicación indentifica que x− 2 = 2 sen θ, x = 2+2 sen θ, dx = 2 cos θ dθ
sin usar algún cambio de variable e incorpora correctamente esta información en∫ 3

1

x+ 2√
4x− x2

dx,

el proceso se considera correcto y se debe asignar los (2,4 pts.) correspondientes. Esto es, puede calcular
la primitiva ∫

x+ 2√
4x− x2

dx =

∫
x+ 2√

4− (x− 2)2
dx

5



=

∫
(2 + 2 sen θ) + 2√

4− 4 sen2 θ
2 cos θ dθ

=

∫
(4 + 2 sen θ) dθ

= 4

∫
dθ + 2

∫
sen θ dθ

= 4θ − 2 cos θ + C,

= 4arcsin

(
x− 2

2

)
−
√

4− (x− 2)2 + C

y finalmente, evaluar en los ĺımites de integración.

Es probable que la resolución entregada no sea tan detallada como la pauta y se reduzca a un cálculo
en un par de ĺıneas. En dicho caso lo importante es que se describa el proceso de manera clara y que se
llegue al resultado correcto al ser coherente con su desarrollo.

Restar (0.1 pts.) sino escriben la constante de la primitiva.

P2. a) (3,0 pts.) Usando la regla de la cadena apropiadamente, calcule el siguiente ĺımite

ĺım
x→0

x

∫ sen(x)

0

e−t2 dt

1− cos(x)
.

Solución

Se usará el teorema fundamental del cálculo junto con la regla de L’Hôpital.
Primero, note que la función e−t2 es continua al ser combinaciones de funciones exponenciales y polinomios.

(0,2 pts. por justificar que esta función es continua)
Por el teorema fundamental del cálculo, se concluye que la función∫ sen(x)

0

e−t2 dt

es derivable (0,2 pts. por justificar que esta función es derivable), más aún(∫ sen(x)

0

e−t2 dt

)′

= e− sen2(x) cos(x).

Además, x

∫ sen(x)

0

e−t2 dt es derivable al ser producto de funciones derivables. Por otro lado, tenemos que

1− cos(x) es derivable, más aún

(1− cos(x))
′
= sen(x).

(0,2 pts. por derivar el denominador)

Asimismo, estas últimas funciones son continuas, por lo que ĺım
x→0

(
x

∫ sen(x)

0

e−t2 dt

)
= 0 y también ĺım

x→0
(1 −

cos(x)) = 0, lo que muestra que el ĺımite es del tipo “ 0
0”.

(0,2 pts. por justificar que el ĺımite es de la forma “0
0
”)

De esta manera,

ĺım
x→0

x

∫ sen(x)

0

e−t2 dt

1− cos(x)

(l’Hôp.)
= ĺım

x→0

∫ sen(x)

0

e−t2 dt+ xe− sen2(x) cos(x)

sen(x)
.

(0,4 pts. por usar la regla de L’Hôpital)
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(0,3 pts. Aplica la derivada del producto en el numerador)
(0,5 pts. Deriva la integral del numerador usando el TFC)

Ahora, como xe− sen2(x) cos(x) es derivable por álgebra y composición de funciones derivables, entonces∫ sen(x)

0

e−t2 dt+ xe− sen2(x) cos(x)

es derivable al ser suma de funciones derivables. Además, la función sen(x) es derivable. Asimismo, estas

funciones son continuas, por lo que ĺım
x→0

(∫ sen(x)

0

e−t2 dt

)
= 0 y también ĺım

x→0
sen(x) = 0, lo que muestra que

el ĺımite es del tipo “0
0”.

(0,2 pts. por argumentar que se puede usar nuevamente la regla de l’Hôpital)
Aśı pues,

ĺım
x→0

∫ sen(x)

0

e−t2 dt+ xe− sen2(x) cos(x)

sen(x)

(l’Hôp.)
= ĺım

x→0

e− sen2(x) cos(x) + (xe− sen2(x) cos(x))′

cos(x)
.

(0,4 pts. por usar la regla de l’Hôpital)

Ahora, como

(xe− sen2(x) cos(x))′ = e− sen2(x) cos(x)− x(sen(2x) cos(x) + sen(x))e− sen2(x),

(0,2 pts. por usar de manera correcta la regla del producto)
entonces el último ĺımite del lado derecho nos queda

ĺım
x→0

e− sen2(x) cos(x) + (e− sen2(x) cos(x)− x(sen(2x) cos(x) + sen(x))e− sen2(x))

cos(x)
,

y por tanto

ĺım
x→0

∫ sen(x)

0

e−t2 dt+ xe− sen2(x) cos(x)

sen(x)
= ĺım

x→0

2e− sen2(x) cos(x)− x(sen(2x) cos(x) + sen(x))e− sen2(x)

cos(x)

= 2. (0,2 pts. por encontrar el valor correcto del ĺımite)

Indicaciones de corrección

Si un/a estudiante encuentra una expresión diferente para

(xe− sen2(x) cos(x))′,

pero se ha utilizado de manera correcta la regla del producto, asignar los (0,2 pts.) correspondientes.

Es probable que la resolución entregada no sea tan detallada como la pauta y se reduzca a un cálculo
en un par de ĺıneas. En dicho caso lo importante es que se describa el proceso de manera clara y que se
llegue al resultado correcto al ser coherente con su desarrollo.

b) Considere las funciones F,G : [0, 1] → R dadas por

F (x) =

∫ x

0

te−t dt, G(x) =

∫ x

0

cos(πx)e−t2 dt.

Sea además H : [0, 1] → R la función dada por

H(x) = F (x)− 2G′(x).

i) (0,5 pts.) Justifique que H es Riemann integrable en [0, 1].
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Solución

Se tiene que H es Riemann integrable, ya que es continua. Note que H resulta continua porque:

(i) F (x) =
∫ x

0
te−t dt es derivable, pues te−t es continua y por el teorema fundamental del cálculo, luego

F es continua.

(0,2 pts. por justificar que F es continua)

(ii) G(x) =
∫ x

0
cos(πx)e−t2 dt = cos(πx)

∫ x

0
e−t2dt es derivable. Aplicando la regla del producto y el

teorema fundamental del cálculo se obtiene

G′(x) = −π sen(πx)

∫ x

0

e−t2dt+ cos(πx) e−x2

,

y la última expresión es una suma y producto de funciones continuas, por lo que G′ es continua.

(0,3 pts. por justificar que G es continua)

Indicaciones de corrección

Es probable que el argumento entregado por un/a estudiante no esté tan detallada como la pauta,
lo importante es que establezcan que necesitan de la continuidad de las funciones que definen a H.

Asignar hasta (0,2 pts.) si un/a estudiante menciona que necesita solo la continuidad de G, pues
se debe tener en cuenta que H está definida a partir de G′.

No se debe descontar puntaje si los/as estudiantes no mencionan que H es continua por álgebra de
funciones continuas.

ii) (2,5 pts.) Demuestre que
H(1) = 1.

Indicación: Puede usar que

∫ 1

0

te−t dt = −2e−1 + 1.

Solución

Como H(x) = F (x)− 2G′(x), entonces

H(1) = F (1)− 2G′(1).

(0,2 pts. por determinar H(1))
De esta manera:

1◦) Usando la indicación tenemos que

F (1) =

∫ 1

0

te−t dt = −2e−1 + 1.

(0,3 pts. por utilizar la indicación de manera correcta para determinar F (1))

2◦) Por otro lado, como

G(x) = cos(πx)

∫ x

0

e−t2 dt,

utilizando la regla del producto junto con el teorema fundamental del cálculo, tenemos que

G′(x) = (cos(πx))′
∫ x

0

e−t2 dt+ cos(πx)

(∫ x

0

e−t2 dt

)′

(0,3 pts. por utilizar la regla del producto correctamente)

= cos(πx)e−x2

− π sen(πx)

∫ x

0

e−t2 dt,

(0,7 pts. por utilizar el teorema fundamental del cálculo de manera correcta)
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donde se usó la diferenciabilidad de la función cos(πx) y que
∫ x

0
e−t2 dt es derivable porque e−t2 es

continua y por el teorema fundamental del cálculo.

(0,2 pts. por justificar la hipótesis del teorema fundamental del cálculo)

De este modo, evaluando en x = 1, concluimos que

G′(1) = cos(π)e−1 − π sen(π)

∫ 1

0

e−t2 dt (0,3 pts. por evaluar en x = 1 correctamente)

= −e−1, (0,2 pts. por determinar el valor correcto de G′(1))

donde en el último paso hemos usado que

cos(π) = −1, sen(π) = 0.

Finalmente, combinando los valores de F (1) y G′(1) en 1◦) y 2◦), obtenemos que

H(1) = 1.

(0,3 pts. por encontrar el valor correcto de H(1))

Indicaciones de corrección

Si no se justifica la hipótesis para utilizar el teorema fundamental del cálculo, se debe descontar los
(0,2 pts.) correspondientes. Si se justifica parcialmente, se debe asignar puntaje parcial.
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P3. Sea f : [0, π/2] → R dada por f(x) = cos(x).

a) (0,5 pts.) Muestre que f es Riemann integrable en [0, π/2].

b) (0,5 pts.) Sea P = {x0, . . . , xn} la partición equiespaciada de [0, π/2], es decir xi =
iπ
2n con i = 0, . . . , n. Defina

f−(x) =


cos(x1), x ∈ [x0, x1)

cos(x2), x ∈ [x1, x2)
...

cos(xn), x ∈ [xn−1, xn]

f+(x) =


cos(x0), x ∈ [x0, x1]

cos(x1), x ∈ (x1, x2]
...

cos(xn−1), x ∈ (xn−1, xn]

Muestre que f− ∈ E−(f) y que f+ ∈ E+(f).
c) (3,5 pts.) Deduzca que para todo n ∈ N, con n ≥ 1 se tiene que

π

2n

sen
(π
4

)
cos

(
(n+ 1)π

4n

)
sen
( π

4n

) ≤
∫ π/2

0

f(x) dx ≤ π

2n

sen
(π
4

)
cos

(
(n− 1)π

4n

)
sen
( π

4n

) .

Indicación: Puede usar (sin necesidad de demostrar) las siguientes identidades tigonométricas.

cos(kα) =

sen

((
k +

1

2

)
α

)
− sen

((
k − 1

2

)
α

)
2 sen

(α
2

) , donde k, α ∈ R.

senA− senB = 2 cos

(
A+B

2

)
sen

(
A−B

2

)
, donde A,B ∈ R.

d) (1,5 pts.) A partir de los apartados b) y c) encuentre el valor de∫ π/2

0

cos(x) dx.

Observación: Solo está permitido usar los ı́tems b) y c). Cualquier otro método será invalidado.

Solución

a) Cualquiera de los siguientes argumentos justifican que f es Riemann integrable en [0, π/2]

f es continua en [0, π/2].

f es decreciente en [0, π/2].

(0,5 pts. por entregar cualquiera de estos argumentos)

b) Notamos que la partición equiespaciada P =
{
xi =

iπ
2n : n = 0, . . . , n

}
sobre [0, π/2] es tal que f+ y f− son

constantes en cada intervalo abierto (xi−1, xi) donde i = 1, . . . , n. Eston nos dice que f+ y f− son escalonadas

(0,2 pts. por mostrar que f+ y f− son escalonadas)

Además f es decreciente, por lo que

(∀i = 1, . . . , n− 1)(∀x ∈ [xi−1, xi))(cos(xi) ≤ cos(x)) ∧ ∀x ∈ [xn−1, xn])(cos(xn) ≤ cos(x))

y por lo tanto (∀x ∈ [0, π/2])(f−(x) ≤ f(x)), es decir f− ∈ E−(f). En forma similar, y nuevamente gracias a
que f es decreciente en [0, π/2] se tiene que

(∀x ∈ [x0, x1])(cos(x0) ≤ cos(x)) ∧ (∀i = 2, . . . , n)(∀x ∈ (xi−1, xi])(cos(xi−1) ≤ cos(x))

y por lo tanto (∀x ∈ [0, π/2])(f(x) ≤ f+(x)), es decir f+ ∈ E+(f).
(0,1 pts. por indicar que cos(x) es decreciente en [0, 1])

(0,2 pts. por mostrar que que f−(x) ≤ cos(x) ≤ f+(x) en [0, 1])

c) Gracias a que f− ∈ E−(f) y f+ ∈ E+(f) se tiene que∫ π/2

0

f−(x) dx ≤
∫ π/2

0

f(x) dx ≤
∫ π/2

0

f+(x) dx.
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(0,7 pts. por esta desigualdad)

Calculamos la integral de f−∫ π/2

0

f−(x) dx =

n∑
i=1

cos(xi)
π

2n
Def. integral función escalonada

(0,7 pts.)

=
π

2n

n∑
i=1

cos
(
i
π

2n

)
Prop. suma y reemplazo xi =

iπ

2n

(0,3 pts.)

=
π

2n

n∑
i=1

sen
((
i+ 1

2

)
π
2n

)
− sen

((
i− 1

2

)
π
2n

)
2 sen

(
π
4n

) Ind. (1) con k = i, α =
π

2n

(0,4 pts.)

=
π

2n

1

2 sen
(

π
4n

) [sen((n+
1

2

)
π

2n

)
− sen

( π

4n

)]
Suma telescópica

(0,7 pts.)

=
π

2n

1

sen
(

π
4n

) sen(π
4

)
cos

(
(n+ 1)π

4n

)
. Ind. (2) con A =

(
n+

1

2

)
π

2n
,B =

π

4n

(0,5 pts.)

Para la integral de f+ los cálculos son similares

(0,2 pts. por entregar esta indicación)∫ π/2

0

f+(x) dx =

n∑
i=1

cos(xi−1)
π

2n
Def. integral función escalonada

=

n−1∑
i=0

cos(xi)
π

2n
Prop. de la sumatoria

=
π

2n

n−1∑
i=0

cos
(
i
π

2n

)
Prop. suma y reemplazo xi−1 =

(i− 1)π

2n

=
π

2n

n−1∑
i=0

sen
((
i+ 1

2

)
π
2n

)
− sen

((
i− 1

2

)
π
2n

)
2 sen

(
π
4n

) Ind. (1) con k = i, α =
π

2n

=
π

2n

1

2 sen
(

π
4n

) [sen((n− 1

2

)
π

2n

)
− sen

(
−π

4n

)]
Suma telescópica

=
π

2n

1

sen
(

π
4n

) sen(π
4

)
cos

(
(n− 1)π

4n

)
Ind. (2) con A =

(
n− 1

2

)
π

2n
,B =

−π

4n

concluimos entonces que

π

2n

sen
(π
4

)
cos

(
(n+ 1)π

4n

)
sen
( π

4n

) ≤
∫ π/2

0

f(x) dx ≤ π

2n

sen
(π
4

)
cos

(
(n− 1)π

4n

)
sen
( π

4n

)
tal como se solicita.

d) En la desigualdad anterior calculamos el ĺımite cuando n tiende a infinito.

(0,2 pts. por entregar esta indicación)

Para simplificar escribimos ϵ = π
4n . De esta manera, n → ∞ es equivalente a que ϵ → 0,

(0,2 pts. por este cambio de variables) luego

π

2n

sen
(π
4

)
cos

(
(n+ 1)π

4n

)
sen
( π

4n

) =
ϵ
√
2

sen ϵ
cos
(π
4
+ ϵ
)

usamos sen
π

4
=

√
2

2
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=
ϵ

sen ϵ
(cos ϵ− sen ϵ) usamos fórmula de coseno de la suma

(0,3 pts.)

luego

ĺım
ϵ→0

ϵ

sen ϵ
(cos ϵ− sen ϵ) = 1

pues ĺım
ϵ→0

ϵ

sen ϵ
= 1, ĺım

ϵ→0
cos ϵ = 1 y ĺım

ϵ→0
sen ϵ = 0.

(0,3 pts. por calcular el ĺımite)

En forma similar

π

2n

sen
(π
4

)
cos

(
(n− 1)π

4n

)
sen
( π

4n

) =
ϵ
√
2

sen ϵ
cos
(π
4
− ϵ
)

usamos sen
π

4
=

√
2

2

=
ϵ

sen ϵ
(cos ϵ+ sen ϵ) usamos fórmula de coseno de la suma

luego

ĺım
ϵ→0

ϵ

sen ϵ
(cos ϵ+ sen ϵ) = 1

(0,2 pts. por calcular este ĺımite)

en definitiva ∫ π/2

0

cos(x)dx = 1.

(0,3 pts.)

Indicaciones de corrección

Si usa un teorema, no olvide verificar expĺıcitamente cada una de sus hipótesis.

Duración: 3h.
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