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Pauta de corrección Control 1

P1. Considere la función f : R → R dada por

f(x) =
1

|x|3 + 1
.

a) (1,5 pts.) Determine dónde f es derivable, calcule f ′ alĺı, y encuentre todos los puntos cŕıticos de f .

Solución

Veremos que f es derivable en x̄ para todo x̄ ∈ R. Para x̄ ∈ R tenemos dos formas de analizar la situación.

Primera forma: análisis de f primero en (−∞, 0) y luego en (0,∞)

En efecto, f(x) coincide con
1

−x3 + 1
si x ∈ (−∞, 0).

(0,1 pts. por notar que f coincide con
1

−x3 + 1
en (−∞, 0))

Como esta es una función racional, es derivable en todo punto de su dominio.

(0,1 pts. por justificar que
1

−x3 + 1
es derivable)

Aśı, f es derivable en x̄ para todo x̄ ∈ (−∞, 0).
(0,1 pts. por concluir que f es derivable en (−∞, 0))

La derivada aqúı es:

f ′(x) = − −3x2

(−x3 + 1)2
=

3x2

(−x3 + 1)2
.

(0,1 pts. por calcular la derivada en (−∞, 0))

Ahora, f(x) coincide con
1

x3 + 1
si x ∈ (0,+∞).

(0,1 pts. por notar que f coincide con
1

x3 + 1
en (0,+∞))

Como esta es una función racional, es derivable en todo punto de su dominio.

(0,1 pts. por justificar que
1

x3 + 1
es derivable)

Aśı, f es derivable en x̄ para todo x̄ ∈ (0,+∞).
(0,1 pts. por concluir que f es derivable en (0,+∞))

La derivada aqúı es:

f ′(x) = − 3x2

(x3 + 1)2
.

(0,1 pts. por calcular la derivada en (0,+∞))



Segunda forma: análisis de f en (−∞, 0) ∪ (0,∞)

Notamos que la función f(x) = 1
|x|3+1 es una composición con la función valor absoluto g(x) = |x|,

ésta última es diferenciable en R \ {0}. De esta forma se deduce que f es una función diferenciable en
R \ {0}. (0,6 pts. por justificar que f es diferenciable en R \ {0})
Sabemos que la derivada de la función valor absoluto se puede escribir de varias formas, por ejemplo

g′(x) =
x

|x|
=

|x|
x

= sgn(x)

donde arriba sgn(x) corresponde a la función signo, la cual se define mediante

sgn(x) =

{
1, x > 0

−1, x < 0

de esta forma, al usar la regla del cociente y de la cadena llegamos a que también f ′ se puede escribir
de varias formas, obviamente todas equivalentes entre śı, por ejemplo

f ′(x) =
−3x2 sgn(x)

(|x|3 + 1)
2 = − 3x|x|

(|x|3 + 1)
2 = − 3|x|2

(|x|3 + 1)
2

x

|x|

por lo descrito anteriormente, lo de arriba es válido para R \ {0}
(0,2 pts. Por entregar la expresión de f ′ en R \ {0})

Falta ver que f es derivable en x̄ = 0.
Podemos calcular los ĺımites laterales (usando varios métodos posibles), o calcular el ĺımite directamente:

Primera forma de calcular el ĺımite lateral izquierdo (ĺımites conocidos)

Se tiene que:

ĺım
x→0−

f(x)− f(0)

x− 0
= ĺım

x→0−

1

−x3 + 1
− 1

x
= ĺım

x→0−

x3

−x3 + 1
x

= ĺım
x→0−

x2

−x3 + 1
=

02

−03 + 1
= 0.

(0,2 pts. por calcular el ĺımite)

En este cálculo, usamos la continuidad de la función
x2

−x3 + 1
en x̄ = 0.

(0,1 pts. por justificar el uso de la continuidad)

Segunda forma de calcular el ĺımite lateral izquierdo (regla de l’Hôpital)

Notemos que:

ĺım
x→0−

f(x)− f(0)

x− 0
= ĺım

x→0−

1

−x3 + 1
− 1

x

(l’Hôp.)
= ĺım

x→0−

3x2

(−x3 + 1)2

1
= ĺım

x→0−

3x2

(−x3 + 1)2
=

3 · 02

(−0 + 1)2
= 0.

(0,1 pts. por calcular el ĺımite)
El uso de la regla de l’Hôpital se justifica porque el ĺımite buscado es de la forma “0/0”, las funciones

1

−x3 + 1
− 1 y x son derivables, y la derivada del denominador x′ = 1 no se anula.

(0,1 pts. por justificar el uso de la regla de l’Hôpital)

Se usó además la continuidad de la función
3x2

(−x3 + 1)2
en x̄ = 0.

(0,1 pts. por justificar el uso de la continuidad)
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Primera forma de calcular el ĺımite lateral derecho (ĺımites conocidos)

Se tiene que:

ĺım
x→0+

f(x)− f(0)

x− 0
= ĺım

x→0−

1

x3 + 1
− 1

x
= ĺım

x→0+

− x3

x3 + 1
x

= ĺım
x→0−

− x2

x3 + 1
= − 02

03 + 1
= 0,

(0,2 pts. por calcular el ĺımite)

En este cálculo, usamos la continuidad de la función
x2

−x3 + 1
en x̄ = 0.

(0,1 pts. por justificar el uso de la continuidad)

Segunda forma de calcular el ĺımite lateral derecho (regla de l’Hôpital)

Notemos que:

ĺım
x→0+

f(x)− f(0)

x− 0
= ĺım

x→0+

1

x3 + 1
− 1

x

(l’Hôp.)
= ĺım

x→0+

3x2

(x3 + 1)2

1
= ĺım

x→0+

3x2

(x3 + 1)2
=

3 · 02

(0 + 1)2
= 0.

(0,1 pts. por calcular el ĺımite)
El uso de la regla de l’Hôpital se justifica porque el ĺımite buscado es de la forma “0/0”, las funciones

1

x3 + 1
− 1 y x son derivables, y la derivada del denominador x′ = 1 no se anula.

(0,1 pts. por justificar el uso de la regla de l’Hôpital)

Se usó además la continuidad de la función
3x2

(x3 + 1)2
en x̄ = 0.

(0,1 pts. por justificar el uso de la continuidad)

Cálculo directo del ĺımite (sin usar ĺımites laterales)

Tenemos que:

ĺım
x→0

f(x)− f(0)

x− 0
= ĺım

x→0

1

|x|3 + 1
− 1

x
= ĺım

x→0

|x|3

|x|3 + 1

x

= ĺım
x→0

|x|3

x(|x|3 + 1)
= ĺım

x→0

x2 · |x|
x(|x|3 + 1)

= ĺım
x→0

x · |x|
|x|3 + 1

=
0 · 0
03 + 1

= 0, (0,4 pts. por hacer este cálculo)

donde usamos que |x3| = |x2 · x| = |x2| · |x| = x2 · |x|, ya que x2 ≥ 0.
(0,1 pts. por justificar que |x3| = x2 · |x|)

Además, usamos la continuidad de la función
x · |x|
|x|3 + 1

en x̄ = 0, que proviene de que es una combinación

de polinomios y la función valor absoluto. (0,1 pts. por justificar el uso de la continuidad)

Vemos aśı que f ′(0) existe y vale 0.
En resumen,

f ′(x) =


3x2

(−x3 + 1)2
si x < 0

0 si x = 0

− 3x2

(x3 + 1)2
si x > 0.

Finalmente, vemos que x̄ = 0 es el único punto cŕıtico de f . En efecto, ya sabemos que f ′(0) = 0. Además, las
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funciones
3x2

(−x3 + 1)2
y − 3x2

(x3 + 1)2
no se anulan para x ̸= 0.

(0,1 pts. por observar que x̄ = 0 es el único punto cŕıtico de f)

b) (1,5 pts.) Encuentre (si los hay) los intervalos donde f es creciente y donde es decreciente. Indique (si los hay) cuáles
son los puntos de mı́nimos y máximos, locales y globales, de f .

Solución

Para saber dónde f es creciente y dónde es decreciente, debemos analizar el signo de f ′.

Primera forma para determinar el signo de f ′ (analizando directamente la expresión)

Si x < 0, tenemos que

f ′(x) =
3x2

(−x3 + 1)2
> 0, (0,4 pts. por notar que f ′ es positiva en (−∞, 0))

ya que el numerador y denominador son siempre positivos.
Similarmente, si x > 0,

f ′(x) = − 3x2

(x3 + 1)2
< 0, (0,4 pts. por notar que f ′ es negativa en (0,+∞))

ya que el numerador y denominador son siempre positivos.
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Segunda forma para determinar el signo de f ′ (evaluando)

Si x < 0, tenemos que

f ′(x) =
3x2

(−x3 + 1)2
.

Esta es una función racional, por lo que es continua en (−∞, 0).
(0,1 pts. por justificar la continuidad)

Aśı, gracias al teorema de los valores intermedios, no puede cambiar de signo salvo que tenga un cero.
(0,1 pts. por usar el teorema de los valores intermedios)

Como sabemos que no tiene ceros en el intervalo (−∞, 0), debe tener signo constante en este intervalo.
(0,1 pts. por justificar que el signo es constante)

Aśı, evaluar en cualquier punto para determinar su signo alĺı.
Notamos que:

f ′(−1) =
3 · (−1)2

(−(−1)3 + 1)2
=

3

4
> 0.

Aśı, f ′ es positiva en (−∞, 0).
(0,1 pts. por evaluar y obtener que el signo es positivo en el intervalo (−∞, 0))

Similarmente, si x > 0,

f ′(x) = − 3x2

(x3 + 1)2
.

Esta es una función racional, por lo que es continua en (−∞, 0).
(0,1 pts. por justificar la continuidad)

Aśı, gracias al teorema de los valores intermedios, no puede cambiar de signo salvo que tenga un cero.
(0,1 pts. por usar el teorema de los valores intermedios)

Como sabemos que no tiene ceros en el intervalo (0,+∞), debe tener signo constante en este intervalo.
(0,1 pts. por justificar que el signo es constante)

Aśı, evaluar en cualquier punto para determinar su signo alĺı.
Notamos que:

f ′(1) = − 3 · 12

(13 + 1)2
= −3

4
< 0.

Aśı, f ′ es negativa en (0,+∞).
(0,1 pts. por evaluar y obtener que el signo es negativo en el intervalo (0,+∞))

Concluimos entonces que f es (estrictamente) creciente en el intervalo (−∞, 0], y (estrictamente) decreciente
en el intervalo [0,∞). (0,3 pts. por encontrar los intervalos de monotońıa de f)
Esto se puede resumir en la siguiente tabla:

−∞ 0 ∞
f ′(x) + −
f(x) ↗ ↘

Tabla 1: Intervalos de monotońıa de f .

Como el único punto cŕıtico de f es x̄ = 0, solo aqúı puede haber un mı́nimo o máximo local.
(0,2 pts. por usar la regla de Fermat para obtener el candidato a máximo o mı́nimo local)

Además, como f pasa de ser estrictamente creciente a estrictamente decreciente en x̄ = 0, concluimos que
x̄ = 0 es un máximo global (y, por lo tanto, también local).

(0,2 pts. por justificar que x̄ = 0 es un máximo global)

Observación

No es posible usar el criterio de caracterización de puntos cŕıticos para determinar la naturaleza de
x̄ = 0. En efecto, f ′′(x̄) = 0, pero f ′′′(x̄) no existe. Aśı, en x̄ = 0, las derivadas que existen son todas
cero.

c) (1,5 pts.) Determine dónde f es dos veces derivable, calcule f ′′ alĺı, y calcule todos los puntos x̄ ∈ R donde f ′′(x̄) = 0.
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Solución

Veremos que f ′ es derivable en x̄ para todo x̄ ∈ R.

En efecto, f ′(x) coincide con
3x2

(−x3 + 1)2
si x ∈ (−∞, 0).

(0,1 pts. por notar que f ′ coincide con
3x2

(−x3 + 1)2
en (−∞, 0))

Como esta es una función racional, es derivable en todo punto de su dominio.

(0,1 pts. por justificar que 3x2

(−x3+1)2
es derivable)

Aśı, f es derivable en x̄ para todo x̄ ∈ (−∞, 0). (0,1 pts. por concluir que f ′ es derivable en (−∞, 0))
La derivada aqúı es:

f ′′(x) =
(3x2)′ · (−x3 + 1)2 − ((−x3 + 1)2)′ · (3x2)

(−x3 + 1)4
=

(6x · (−x3 + 1)2 − 2(−x3 + 1) · (−3x2) · (3x2)

(−x3 + 1)4

=
(6x · (−x3 + 1)− 2 · (−3x2) · (3x2)

(−x3 + 1)3
=

6x(−x3 + 1 + 3x3)

(−x3 + 1)3
=

6x(2x3 + 1)

(−x3 + 1)3
.

(0,1 pts. por calcular f ′′ en (−∞, 0))

Ahora, f ′(x) coincide con − 3x2

(x3 + 1)2
si x ∈ (0,+∞).

(0,1 pts. por notar que f ′ coincide con −
3x2

(x3 + 1)2
en (0,+∞))

Como esta es una función racional, es derivable en todo punto de su dominio.

(0,1 pts. por justificar que −
3x2

(x3 + 1)2
es derivable)

Aśı, f es derivable en x̄ para todo x̄ ∈ (0,+∞). (0,1 pts. por concluir que f ′ es derivable en (0,+∞))
La derivada aqúı es:

f ′′(x) = − (3x2)′ · (x3 + 1)2 − ((x3 + 1)2)′ · (3x2)

(−x3 + 1)4
= − (6x · (x3 + 1)2 − 2(x3 + 1) · (3x2) · (3x2)

(x3 + 1)4

= − (6x · (x3 + 1)− 2 · (3x2) · (3x2)

(x3 + 1)3
= −6x(x3 + 1− 3x3)

(x3 + 1)3
= −6x(1− 2x3)

(x3 + 1)3
=

6x(2x3 − 1)

(x3 + 1)3
.

(0,1 pts. por calcular f ′′ en (0,+∞))
Falta ver que f ′ es derivable en x̄ = 0.
Podemos calcular los ĺımites laterales (usando varios métodos posibles), o calcular el ĺımite directamente:

Primera forma de calcular el ĺımite lateral izquierdo (ĺımites conocidos)

ĺım
x→0−

f ′(x)− f ′(0)

x− 0
= ĺım

x→0−

3x2

(−x3 + 1)2

x
= ĺım

x→0−

3x

(−x3 + 1)2
=

3 · 0
(−03 + 1)2

= 0,

(0,2 pts. por calcular el ĺımite)

donde usamos la continuidad de la función
3x

(−x3 + 1)2
en x̄ = 0.

(0,1 pts. por justificar el uso de la continuidad)
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Segunda forma de calcular el ĺımite lateral izquierdo (regla de l’Hôpital)

Notemos que:

ĺım
x→0−

f ′(x)− f ′(0)

x− 0
= ĺım

x→0−

3x2

(−x3 + 1)2

x

(l’Hôp.)
= ĺım

x→0−

6x · (−x3 + 1)2 − 3x2 · 2(−x3 + 1) · (−3x2)

(−x3 + 1)4

1

= ĺım
x→0−

6x(−x3 + 1)2 + 18x4(−x3 + 1)

(−x3 + 1)4

=
6 · 0 · (−03 + 1)2 + 18 · 04 · (−03 + 1)

(−03 + 1)2
= 0,

(0,1 pts. por calcular el ĺımite)
donde el uso de la regla de l’Hôpital se justifica porque el ĺımite es de la forma “0/0”, las funciones

3x2

(−x3 + 1)2
y x son derivables, y la derivada del denominador x′ = 1 no se anula.

(0,1 pts. por justificar el uso de la regla de l’Hôpital)

Se usó además la continuidad de la función
6x(−x3 + 1)2 + 18x4(−x3 + 1)

(−x3 + 1)4
.

(0,1 pts. por justificar el uso de la continuidad)

Primera forma de calcular el ĺımite lateral derecho (ĺımites conocidos)

ĺım
x→0+

f ′(x)− f ′(0)

x− 0
= ĺım

x→0+

− 3x2

(x3 + 1)2

x
= ĺım

x→0−
− 3x

(x3 + 1)2
= − 3 · 0

(03 + 1)2
= 0,

(0,2 pts. por calcular el ĺımite)

donde usamos la continuidad de la función − 3x

(x3 + 1)2
en x̄ = 0.

(0,1 pts. por justificar el uso de la continuidad)
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Segunda forma de calcular el ĺımite lateral derecho (regla de l’Hôpital)

Notemos que:

ĺım
x→0+

f ′(x)− f ′(0)

x− 0
=

− 3x2

(x3 + 1)2

x

(l’Hôp.)
= ĺım

x→0+

−6x · (x3 + 1)2 − 3x2 · 2(x3 + 1) · 3x2

(x3 + 1)4

1

= ĺım
x→0+

−6x(x3 + 1)2 + 18x4(x3 + 1)

(x3 + 1)4

=
6 · 0 · (03 + 1)2 − 18 · 04 · (03 + 1)

(03 + 1)2
= 0,

(0,1 pts. por calcular el ĺımite)
donde el uso de la regla de l’Hôpital se justifica porque el ĺımite es de la forma “0/0”, las funciones

− 3x2

(x3 + 1)2
y x son derivables, y la derivada del denominador x′ = 1 no se anula.

(0,1 pts. por justificar el uso de la regla de l’Hôpital)

Se usó además la continuidad de la función −6x(x3 + 1)2 + 18x4(x3 + 1)

(x3 + 1)4
.

(0,1 pts. por justificar el uso de la continuidad)
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Cálculo directo del ĺımite (sin usar ĺımites laterales)

A partir de la fórmula de la parte a), tenemos que

f ′(x) = − 3x2

(|x|3 + 1)2
h(x),

donde h : R → R es la función “signo” definida por

h(x) =


−1 si x < 0

0 si x = 0

1 si x > 0.

(0,2 pts. por reescribir f ′(x))
Aśı,

ĺım
x→0

f(x)− f(0)

x− 0
= ĺım

x→0

− 3x2

(|x|3 + 1)2
h(x)− 0

x
= − ĺım

x→0

3x

(|x|3 + 1)2
h(x)

= ĺım
x→0

3

(|x|3 + 1)2
· ĺım
x→0

xh(x) =
3

03 + 1
· 0 = 0, (0,2 pts. por hacer este cálculo)

donde usamos que ĺım
x→0

xh(x) = 0 ya que es un ĺımite del tipo “nula por acotada”.

(0,1 pts. por justificar que ĺımx→0 xh(x) = 0)

Observación

La función h(x) no es continua, aśı que no se puede usar la continuidad para justificar este
ĺımite.

Además, usamos la continuidad de la función
3

(|x|3 + 1)2
en x̄ = 0, que proviene de que es una combi-

nación de polinomios y la función valor absoluto.
(0,1 pts. por justificar el uso de la continuidad)

Vemos aśı que f ′′(0) existe y vale 0.
En resumen,

f ′′(x) =


6x(2x3 + 1)

(−x3 + 1)3
si x < 0

0 si x = 0
6x(2x3 − 1)

(x3 + 1)3
si x > 0.

Finalmente, vemos que f ′′(x̄) = 0 solo cuando x̄ = 0, cuando 2x̄3 + 1 = 0 y cuando 2x̄3 − 1 = 0. Esto es,
cuando x̄ ∈ {−1/ 3

√
2, 0, 1/ 3

√
2}. (0,1 pts. por calcular los puntos donde f ′′ se anula)

d) (1,5 pts.) Determine (si los hay) los intervalos donde f es convexa y donde es cóncava.

Solución

Para saber dónde f es convexa y dónde es cóncava, debemos analizar el signo de f ′′.
(0,1 pts. por indicar que basta ver el signo de f ′′)
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Primera forma (Analizando directamente la expresión)

Supongamos primero que x < 0. Tenemos que

f ′′(x) =
6x(2x3 + 1)

(−x3 + 1)3
.

Notemos que 6x < 0 y −x3 + 1 > 0, por lo que el signo de f ′′(x) es contrario al signo de 2x3 + 1.
(0,2 pts. por indicar que el signo depende solo de 2x3 + 1)

Aśı, f ′′(x) será positiva si x ∈ (−∞,−1/ 3
√
2), y será negativa si x ∈ (−1/ 3

√
2, 0).

(0,3 pts. por indicar dónde f ′′(x) es positiva/negativa en el intervalo (−∞, 0))
Supongamos ahora que x > 0. Tenemos que

f ′′(x) =
6x(2x3 − 1)

(x3 + 1)3
.

Notemos que 6x > 0 y x3 + 1 > 0, por lo que el signo de f ′′(x) es igual al signo de 2x3 − 1.
(0,2 pts. por indicar que el signo depende solo de 2x3 − 1)

Aśı, f ′′(x) será negativa si x ∈ (0, 1/ 3
√
2), y será positiva si x ∈ (1/ 3

√
2,+∞).

(0,3 pts. por indicar dónde f ′′(x) es positiva/negativa en el intervalo (0,+∞))
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Segunda forma para determinar el signo de f ′ (evaluando)

Si x < 0, tenemos que

f ′′(x) =
6x(2x3 + 1)

(−x3 + 1)3
.

Esta es una función racional, por lo que es continua en (−∞, 0).
(0,1 pts. por justificar la continuidad)

Aśı, gracias al teorema de los valores intermedios, no puede cambiar de signo salvo que tenga un cero.
(0,1 pts. por usar el teorema de los valores intermedios)

Como sabemos que no tiene ceros en el intervalo (−∞,−1/ 3
√
2), debe tener signo constante en este

intervalo. (0,1 pts. por justificar que el signo es constante)
Aśı, evaluar en cualquier punto para determinar su signo alĺı. Esto también es válido para el intervalo
(−1/ 3

√
2, 0).

Notamos que:

f ′′(−1) =
6 · (−1) · (2 · (−1)3 + 1)

(−(−1)3 + 1)3
=

3

4
> 0

f ′′(−1/2) =
6 · (−1/2) · (2 · (−1/2)3 + 1)

(−(−1/2)3 + 1)3
= −128

81
< 0.

Aśı, f ′ es positiva en (−∞,−1/ 3
√
2) y negativa en (−1/ 3

√
2, 0).

(0,1 pts. por evaluar y obtener que el signo es positivo en el intervalo (−∞,−1/ 3
√
2))

(0,1 pts. por evaluar y obtener que el signo es negativo en el intervalo (−1/ 3
√
2, 0))

Similarmente, si x > 0,

f ′′(x) =
6x(2x3 − 1)

(x3 + 1)3
.

Esta es una función racional, por lo que es continua en (0,+∞).
(0,1 pts. por justificar la continuidad)

Aśı, gracias al teorema de los valores intermedios, no puede cambiar de signo salvo que tenga un cero.
(0,1 pts. por usar el teorema de los valores intermedios)

Como sabemos que no tiene ceros en el intervalo (0, 1/ 3
√
2), debe tener signo constante en este intervalo.

(0,1 pts. por justificar que el signo es constante)
Aśı, evaluar en cualquier punto para determinar su signo alĺı. Esto también es válido para el intervalo
(1/ 3

√
2,+∞).

Notamos que:

f ′′(1) =
6 · 1 · (2 · 13 − 1)

(13 + 1)3
=

3

4
> 0

f ′′(1/2) =
6 · (1/2) · (2 · (1/2)3 − 1)

((1/2)3 + 1)3
= −128

81
< 0.

Aśı, f ′ es negativa en (0, 1/ 3
√
2) y positiva en (1/ 3

√
2,+∞).

(0,1 pts. por evaluar y obtener que el signo es positivo en el intervalo (0, 1/ 3
√
2))

(0,1 pts. por evaluar y obtener que el signo es negativo en el intervalo (1/ 3
√
2,+∞))

En conclusión, obtenemos que f es convexa en el intervalo (−∞,−1/ 3
√
2].

(0,1 pts. por concluir que f es convexa en (−∞,−1/ 3
√
2])

Además, f es cóncava en el intervalo [−1/ 3
√
2, 0].

(0,1 pts. por concluir que f es cóncava en [−1/ 3
√
2, 0])

Por otro lado, f es cóncava en el intervalo [0, 1/ 3
√
2].
(0,1 pts. por concluir que f es cóncava en [0, 1/ 3

√
2])

Además, f es convexa en el intervalo [1/ 3
√
2,+∞).

(0,1 pts. por concluir que f es convexa en [1/ 3
√
2,+∞))
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En resumen, la convexidad y concavidad de f es:

−∞ −1/ 3
√
2 1/ 3

√
2 +∞

f ′′(x) + − +
f(x) ⌣ ⌢ ⌣

Tabla 2: Intervalos de convexidad y concavidad de f .

P2. a) (3,0 pts.) Sean α y β números reales positivos. Sea f : R → R definida por

f(x) =


sen(βx)− sen(x)

x+ sen(3x)
si x < 0

2 si x = 0

(1 + αx)1/x si x > 0.

Determine los valores de α y β que hacen que f sea continua en x̄ = 0.

Solución

Para que f sea continua en x̄ = 0 debe ocurrir que

ĺım
x→0−

f(x) = ĺım
x→0+

f(x) = f(0). (1)

Sabemos que f(0) = 2, por lo que estos dos ĺımites laterales deben ser iguales a 2.
(0,2 pts. por indicar que ambos ĺımites laterales deben ser iguales a f(0) = 2)

Calculemos los ĺımites en función de α y β:

Primera forma de calcular el ĺımite lateral izquierdo (ĺımite conocido)

Notemos que:

ĺım
x→0−

f(x) = ĺım
x→0−

sen(βx)− sen(x)

x+ sen(3x)
= ĺım

x→0−

sen(βx)− sen(x)

x
· x

x+ sen(3x)

= ĺım
x→0−

(
sen(βx)

x
− sen(x)

x

)
· x

x+ sen(3x)

=

(
β ĺım

x→0−

sen(βx)

βx
− ĺım

x→0−

sen(x)

x

)
·

 1

1 + 3 ĺım
x→0−

sen(3x)

3x

 =
β − 1

4
.

(0,6 pts. por calcular el ĺımite)

donde usamos los cambios de variable u = βx y v = 3x y el ĺımite conocido ĺım
t→0−

sen(t)

t
.

(0,3 pts. por hacer bien el cambio de variable)
(0,3 pts. por justificar el uso del ĺımite conocido)

Segunda forma de calcular el ĺımite lateral izquierdo (regla de l’Hôpital)

Notemos que:

ĺım
x→0−

sen(βx)− sen(x)

x+ sen(3x)

(l’Hôp.)
= ĺım

x→0−

β cos(βx)− cos(x)

1 + 3 cos(3x)
=

β cos(β · 0)− cos(0)

1 + 3 cos(3 · 0)
=

β − 1

4
.

(0,6 pts. por calcular el ĺımite)
El uso de la regla de l’Hôpital se justifica porque el ĺımite buscado es de la forma “0/0”, las funciones
sen(βx)−sen(x) y x+sen(3x) son derivables, y la derivada del denominador (x+sen(3x))′ = 1+3 cos(3x)
no se anula en el intervalo (−π/6, 0).

(0,6 pts. por justificar el uso de la regla de l’Hôpital)
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Primera forma de calcular el ĺımite lateral derecho (ĺımite conocido)

Notemos que:

ĺım
x→0+

f(x) = ĺım
x→0+

(1 + αx)1/x = ĺım
u→+∞

(
1 +

α

u

)u

= eα,

(0,6 pts. por calcular el ĺımite)
donde usamos el cambio de variable u = 1/x y la definición de la función exponencial.

(0,3 pts. por hacer bien el cambio de variable)
(0,3 pts. por justificar el cálculo del ĺımite por la definición de función exponencial)

Segunda forma de calcular el ĺımite lateral derecho (logaritmo y ĺımite conocido)

Notemos que:
ĺım

x→0+
f(x) = ĺım

x→0+
(1 + αx)1/x.

Aplicamos logaritmo “dentro del ĺımite”, quedando:

ĺım
x→0+

ln
(
(1 + αx)1/x

)
= ĺım

x→0+

ln(1 + αx)

x
= α ĺım

x→0+

ln(1 + αx)

αx
= α ĺım

u→0+

ln(1 + u)

u
= α,

(0,3 pts. por calcular el ĺımite)

donde usamos el cambio de variable u = αx y el ĺımite conocido
ln(1 + u)

u
= 1.

(0,2 pts. por hacer bien el cambio de variable)
(0,2 pts. por justificar el uso del ĺımite conocido)

Ahora, gracias a la continuidad de la función exponencial en x̄ = α, podemos aplicar exponencial para
obtener que

ĺım
x→0+

(1 + αx)1/x = exp

(
ĺım

x→0+
ln

(
(1 + αx)1/x

))
= eα.

(0,3 pts. por calcular el ĺımite)
(0,2 pts. por justificar el uso de la continuidad para calcular el ĺımite)

Tercera forma de calcular el ĺımite lateral derecho (logaritmo y regla de l’Hôpital)

Notemos que:
ĺım

x→0+
f(x) = ĺım

x→0+
(1 + αx)1/x.

Aplicamos logaritmo “dentro del ĺımite”, quedando:

ĺım
x→0+

ln
(
(1 + αx)1/x

)
= ĺım

x→0+

ln(1 + αx)

x

(l’Hôp.)
= ĺım

x→0+

α

1 + αx
1

=
α

1 + α · 0
= α,

(0,3 pts. por calcular el ĺımite)
donde el uso de la regla de l’Hôpital se justifica porque el ĺımite buscado es de la forma “0/0”, las
funciones ln(1 + αx) y x son derivables al ser combinaciones de polinomios y logaritmos, y la derivada
del denominador x′ = 1 nunca se anula. (0,2 pts. por justificar el uso de l’Hôpital)

El último ĺımite se justifica por la continuidad de la función
α

(1 + αx)
en x̄ = 0.

(0,2 pts. por justificar el uso continuidad para calcular el último ĺımite)
Ahora, gracias a la continuidad de la función exponencial en x̄ = α, podemos aplicar exponencial para
obtener que

ĺım
x→0+

(1 + αx)1/x = exp

(
ĺım

x→0+
ln

(
(1 + αx)1/x

))
= eα.

(0,3 pts. por calcular el ĺımite)
(0,2 pts. por justificar el uso de la continuidad para calcular el ĺımite)
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Aśı, (1) queda:

eα =
β − 1

4
= 2,

(0,2 pts. por indicar la ecuación que deben satisfacer α y β)
Obtenemos que α = ln(2) (0,1 pts. por obtener el valor correcto de α)
Además, vemos que β = 9. (0,1 pts. por obtener el valor correcto de β)

b) (3,0 pts.) Sea a ∈ [0, 1]. Demuestre que la ecuación 2x3 = a(x4+1), con incógnita x ∈ R, tiene al menos una solución.

Solución

Primera forma (teorema de los valores intermedios en [0, 1] directamente)

Podemos reescribir la ecuación como

2x3

x4 + 1
= a. (0,3 pts. por reescribir la ecuación)

Esto sugiere definir la función auxiliar la función auxiliar h : R → R por

h(x) =
2x3

x4 + 1
. (1,0 pto. por definir la función h)

Sabemos que h es continua al ser una función racional. (0,3 pts. por justificar que h es continua)
Tenemos que

h(0) = 0 (0,2 pts. por calcular h(0))

h(1) = 1. (0,2 pts. por calcular h(1))

Como h es continua y a ∈ [0, 1], el teorema de los valores intermedios asegura que existe x̄ ∈ [0, 1] tal
que h(x̄) = a. (0,5 pts. por usar correctamente el teorema de los valores intermedios)
Se tiene que x̄ es una solución de la ecuación.

(0,5 pts. por concluir que x̄ es solución de la ecuación original)

Segunda forma (encontrando un cero en [0, 1])

Podemos reescribir la ecuación como

2x3

x4 + 1
− a = 0. (0,3 pts. por reescribir la ecuación)

Esto sugiere definir la función auxiliar la función auxiliar h : R → R por

h(x) =
2x3

x4 + 1
− a. (1,0 pto. por definir la función h)

Sabemos que h es continua al ser una función racional. (0,3 pts. por justificar que h es continua)
Tenemos que

h(0) = −a ≤ 0 (0,2 pts. por notar que h(0) ≤ 0)

h(1) = 1− a ≥ 0, (0,2 pts. por notar que h(1) ≥ 0)

por lo que h cambia de signo en [0, 1].
Como h es continua, el teorema de los valores intermedios asegura que h tiene un cero x̄ ∈ [0, 1].

(0,5 pts. por usar correctamente el teorema de los valores intermedios)
Se tiene que x̄ es una solución de la ecuación.

(0,5 pts. por concluir que x̄ es solución de la ecuación original)
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Tercera forma (teorema de los valores intermedios en [1,∞) directamente)

Primero, si a = 0, tenemos inmediatamente que x = 0 es una solución de la ecuación. Supondremos
entonces que a ∈ (0, 1]. (0,1 pts. por analizar el caso a = 0)
Podemos reescribir la ecuación como

2x3

x4 + 1
= a. (0,3 pts. por reescribir la ecuación)

Esto sugiere definir la función auxiliar la función auxiliar h : R → R por

h(x) =
2x3

x4 + 1
. (1,0 pto. por definir la función h)

Sabemos que h es continua al ser una función racional. (0,3 pts. por justificar que h es continua)
Tenemos que

h(1) = 1 (0,2 pts. por calcular h(0))

ĺım
x→∞

h(x) = 0. (0,2 pts. por notar que ĺımx→∞ h(x) = 0)

Como a > 0, esto significa que existe b ∈ [1,∞) tal que h(b) < a.
Como h es continua y a ∈ [h(b), 1], el teorema de los valores intermedios asegura que existe x̄ ∈ [1, b]
tal que h(x̄) ≤ a. (0,5 pts. por usar correctamente el teorema de los valores intermedios)
Se tiene que x̄ es una solución de la ecuación.

(0,4 pts. por concluir que x̄ es solución de la ecuación original)

Cuarta forma (encontrando un cero en [1,∞))

Primero, si a = 0 tenemos inmediatamente que x = 0 es una solución de la ecuación. Supondremos
entonces que a ∈ (0, 1]. (0,1 pts. por analizar el caso a = 0)
Podemos reescribir la ecuación como

2x3

x4 + 1
= a. (0,3 pts. por reescribir la ecuación)

Esto sugiere definir la función auxiliar la función auxiliar h : R → R por

h(x) =
2x3

x4 + 1
− a. (1,0 pto. por definir la función h)

Sabemos que h es continua al ser una función racional. (0,3 pts. por justificar que h es continua)
Tenemos que

h(1) = 1− a ≥ 0 (0,2 pts. por notar que h(1) ≥ 0)

ĺım
x→∞

h(x) = −a. (0,2 pts. por notar que ĺımx→∞ h(x) = −a)

Como a > 0, esto significa que existe b ∈ [1,∞) tal que h(b) ≤ 0. Vemos aśı que h cambia de signo en
[1,∞).
Como h es continua, el teorema de los valores intermedios asegura que h tiene un cero x̄ ∈ [0, 1].

(0,5 pts. por usar correctamente el teorema de los valores intermedios)
Se tiene que x̄ es una solución de la ecuación.

(0,4 pts. por concluir que x̄ es solución de la ecuación original)

P3. Considere la función f : (−1,+∞) → (−1/e,+∞) dada por f(x) = x exp(x). Se tiene que f es biyectiva (no lo demuestre),
por lo que admite una inversa f−1 : (−1/e,+∞) → (−1,+∞).

a) (1,5 pts.) Muestre que f−1 es derivable con

(f−1)′(x) =
1

x+ exp(f−1(x))
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para todo x ∈ (−1/e,+∞).

Solución

Notemos que f es derivable al ser un producto de un polinomio y una exponencial.
(0,2 pts. por justificar que f es derivable)

Además, sabemos que f es biyectiva. (0,1 pts. por hacer expĺıcita esta hipótesis)
Aśı, por el teorema de la derivada de una función inversa, f−1 es derivable en todos los puntos x̄ ∈ (−1/e,+∞)
tales que f ′(f−1(x̄)) ̸= 0. (0,1 pts. por justificar que f−1 es derivable en estos puntos)
Por lo tanto, basta verificar que f ′ nunca se anula para que f−1 sea derivable en todo su dominio.
Tenemos que:

f ′(x) = x′ · exp(x) + x · exp′(x) = exp(x) + x exp(x) = exp(x)(x+ 1). (0,2 pts. por calcular f ′(x))

Como exp(x) ̸= 0, basta comprobar que x + 1 ̸= 0. Esto resulta directamente de que x ∈ (−1,+∞), es decir,
x > −1. (0,2 pts. por justificar que f ′ no se anula en (−1,+∞))
Concluimos aśı que f−1 es derivable.
Además, el teorema establece que

(f−1)′(x) =
1

f ′(f−1(x))
. (0,2 pts. por enunciar la derivada de la inversa)

Como

f ′(x) = exp(x) + x exp(x) = exp(x) + f(x) (0,2 pts. por notar que f ′(x) = exp(x) + f(x))

vemos que
f ′(f−1(x)) = exp(f−1(x)) + f(f−1(x)) = x+ exp(f−1(x)).

(0,2 pts. por notar que f ′(f−1(x)) = x + exp(f−1(x)))
Por lo tanto,

(f−1)′(x) =
1

x+ exp(f−1(x))
. (0,1 pts. por concluir)

b) (1,5 pts.) Demuestre la desigualdad
f−1(x) + exp(f−1(x)) ≥ x+ 1

para todo x ∈ (0, 1].

Indicación: Defina la función auxiliar h : [0, 1] → R por h(x) = f−1(x)+ exp(f−1(x)) y use el teorema del valor medio
en un intervalo conveniente.

Solución

Sea x ∈ (0, 1]. Notemos que h es continua en el intervalo [0, x] y que es derivable en el intervalo (0, x) porque
f−1 y exp son continuas en [0, x] y derivables en (0, x) por la parte anterior.

(0,2 pts. por justificar las hipótesis del teorema del valor medio)
Aśı, el teorema del valor medio muestra que existe ξ ∈ (0, x) tal que

h(x)− h(0)

x− 0
= h′(ξ). (0,3 pts. por usar el teorema del valor medio)

Podemos desarrollar estas expresiones. Comenzamos calculando h(0):

f(0) = 0 =⇒ f−1(0) = 0 =⇒ h(0) = 0 + exp(0) = 1. (0,2 pts. por calcular h(0))

Continuamos calculando h′(ξ):

h′(ξ) =
1

ξ + exp(f−1(ξ))
+exp(f−1(ξ))· 1

ξ + exp(f−1(ξ))
=

1 + exp(f−1(ξ))

ξ + exp(f−1(ξ))
. (0,2 pts. por calcular h′(ξ))

De este modo, obtenemos que

h(x)− 1

x
=

1 + exp(f−1(ξ))

ξ + exp(f−1(ξ))
⇐⇒ h(x) = x · 1 + exp(f−1(ξ))

ξ + exp(f−1(ξ))
+ 1.

(0,2 pts. por llegar a esta fórmula para h(x))
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Finalmente, tenemos que
1 + exp(f−1(ξ))

ξ + exp(f−1(ξ))
≥ 1,

ya que
1 + exp(f−1(x)) ≥ ξ + exp(f−1(x))

porque ξ ∈ (0, 1). (0,2 pts. por obtener que
1 + exp(f−1(ξ))

ξ + exp(f−1(ξ))
≥ 1)

Aśı, resulta que h(x) ≥ x+ 1, que es exactamente lo buscado. (0,2 pts. por concluir)

c) (1,5 pts.) Muestre que (f−1)′ es derivable con

(f−1)′′(x) = − x+ 2 exp(f−1(x))

(x+ exp(f−1(x)))3

para todo x ∈ (−1/e,+∞).

Solución

Recordemos que, por la parte a), f−1(x) es derivable en (1/e,+∞) con

(f−1)′(x) =
1

x+ exp(f−1(x))
.

Esta expresión es un cociente de funciones derivables, por lo que también es derivable.
(0,3 pts. por justificar que (f−1)′ es derivable)

Derivando:

(f−1)′′(x) = − (x+ exp(f−1(x))′

(x+ exp(f−1(x))2
(0,3 pts. por usar la regla de la cadena)

= −1 + exp(f−1(x)) · (f−1)′(x)

(x+ exp(f−1(x))2
(0,3 pts. por usar la regla de la cadena)

= −
1 + exp(f−1(x)) · 1

x+ exp(f−1(x))

(x+ exp(f−1(x))2
(0,3 pts. por usar la parte a))

= −

x+ exp f−1(x) + exp(f−1(x))·
x+ exp(f−1(x))

(x+ exp(f−1(x))2

= − x+ 2 exp(f−1(x))

(x+ exp(f−1(x))3
. (0,3 pts. por obtener la fórmula buscada)

d) (1,5 pts.) Calcule el polinomio de Taylor de orden 2 de f−1 en torno a x̄ = 0.

Solución

El polinomio de Taylor de orden 2 de f−1 en torno a x̄ = 0 es:

T 2
f−1(x) = f−1(0) + (f−1)′(0)x+

(f−1)′′(0)

2
x2. (2)

(0,3 pts. por enunciar la fórmula del polinomio de Taylor)
El hecho de que f(0) = 0 junto a las partes anteriores muestra que:

f−1(0) = 0; (0,3 pts. por encontrar f−1(0))

(f−1)′(0) =
1

exp(f−1(0))
=

1

exp(0)
= 1; y (0,3 pts. por encontrar (f−1)′(0))

(f−1)′′(0) = − 2 exp(f−1(0))

(exp(f−1(0)))3
= − 2 exp(0)

(exp(0))3
= −2. (0,3 pts. por encontrar (f−1)′′(0))

Reemplazando en (2), resulta
T 2
f−1(x) = x− x2.
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(0,3 pts. por encontrar T 2
f−1(x))
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