
SEMANA 7

Integral de Riemann

7.1 Introducción

La teoŕıa de la integral de Riemann tiene un objetivo simple, que es: formalizar la noción de área mediante
una definición que sea compatible con las ideas comunes e intuitivas acerca de este concepto.

Surge entonces la pregunta de ¿Cuales son estas ideas básicas?. Por ejemplo, una de ellas es que el área
de una superficie cuadrada de lado a sea a2. Si esto es verdadero, se debe concluir que la superficie de un
rectángulo de lados a y b es a ∙ b.

7.2 Condiciones básicas para una definición de área

Sea E un conjunto de puntos en el plano OXY . El área del conjunto E será un número real A(E ) que cumple
las siguientes condiciones.

(A1) A(E ) > 0

(A2) E ⊆ F =⇒ A(E ) 6 A(F )

(A3) Si A(E ∩ F ) = 0 =⇒ A(E ∪ F ) = A(E ) + A(F )

(A4) El área de una región rectangular E de lados a y b es A(E ) = a ∙ b

Estas 4 condiciones son necesarias y suficientes para tener una buena definición de área. Se verá mas adelante,
en el transcurso del curso, que la integral de Riemann las satisface adecuadamente.

Observación 1. Las cuatro propiedades elementales anteriores no son independientes entre śı, ya que por
ejemplo (A2) es una consecuencia de (A1) y (A3)

Mediante la integral de Riemann se definirá el área de una región E particular: Dada una función f : [a, b]→
R+ consideremos la región R limitada por el eje OX , la curva de ecuación y = f (x) y las rectas verticales
x = a y x = b. El área de esta región se llamará área bajo la curva y = f (x) entre a y b.

x

y

a b

y = f (x)

R

Figura 1: Región bajo una curva positiva.
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Mediante un ejemplo se mostrará un método para determinar el área bajo una curva, que nos indicará el
procedimiento a seguir en la definición de la integral de Riemann.

Por el momento, nos concentramos en la propiedad A3, que sugiere dividir la región R en regiones más
pequeñas. Por este motivo, el primer elemento que incorpora la definición de integral de Riemann es el
concepto de partición, que sirve intuitivamente, para dividir la región R en bandas verticales, como se muestra
en la figura 2. Antes de dar la definición formal de este concepto, mencionemos que la idea de cortar la región
R por bandas verticales es una de las caracteŕıstica más notable de la idea de Riemann. La otra integral que
a veces se menciona en los cursos matemáticos es la de Lebesgue, que se caracteriza por dividir la region R
cortando en el eje OY de las imágenes. La gran complicación de esa teoŕıa alternativa, es que por un lado
se deben manipular los conjuntos preimágenes y por otro lado estos conjuntos pueden ser de geometŕıa muy
compleja.

x

y

a b

y = f (x)

R

x1 x2 x3 x4

Figura 2: Región R cortada por bandas verticales.

Definición 2. Una partición de un intervalo [a, b] ⊂ R es un conjunto finito de puntos P = {x0, . . . , xn}
tales que

a = x0 < x1 < ∙ ∙ ∙ < xn = b

Se llama norma de la partición P al real |P | = max
i=1,...,n

(xi − xi−1)

Una vez que la región R se ha dividido, hay que calcular el área de cada una de las bandas verticales. Es
en este momento, donde las complicaciones comienzan. Todo depende de lo complicada que sea la función
tratada. En lo que sigue de esta sección, se explota esta idea hasta sus últimas consecuencias, pero solamente
par la función y = xα.

Ejemplo

Dada la función f (x) = xα, donde α > 0, se desea calcular el área encerrada entre x = a y x = b > 0 bajo
la curva y = f (x), es decir, calcular el área de R = {(x , y) ∈ R2 : x ∈ [a, b], 0 6 y 6 xα}.

2



a b

y = xα

Para estimar el área de la región R comenzamos por considerar una partición arbitraria del intervalo [a, b].
Digamos P = {x0, . . . , xn} (ver dibujo de la pizarra).

La segunda idea importante es "acotar". Para ello, en cada subintervalo [xi−1, xi ] definido por la partición P ,
levantamos rectángulos por dentro y por fuera de la region considerada. Para que las cotas sean "lo mejor
posible", se levantan rectángulos inscritos lo mas altos posibles y rectángulos exteriores lo más bajos posible.

Ri

xi−1 xi x

y

a b

y = xα

xi−1 xi x

y

Ri

a b

y = xα

Figura 3: Cotas inferior y superior de Ri

Es aśı como:

R i = [xi−1, xi ]× [0, x
α
i−1]

R i = [xi−1, xi ]× [0, x
α
i−1]

Con esto claramente
n⋃

i=1

R i ⊆ R ⊆
n⋃

i=1

R i

Ahora usamos las propiedades A2,A3 de área para deducir que

n∑

i=1

A(R i) 6 A(R) 6
n∑

i=1

A(R i)

Usando la propiedad A4 de área, concluimos que

∀P partición de [a, b],
n∑

i=1

xαi−1(xi − xi−1) 6 A(R) 6
n∑

i=1

xαi (xi − xi−1). (1)
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Para terminar con nuestras estimaciones, hay que calcular expĺıcitamente las sumatorias. Para ello debemos
considerar casos especiales de las particiones, donde el cálculo es realizable con álgebra elemental.

Para situaciones especiales como la aqúı considerada, usaremos principalmente dos tipos de particiones espe-
ciales:

• Las particiones equi-espaciadas donde xi = a + i ∗ b−an . Aqúı el factor h =
b−a
n
se llama el paso de la

partición, y corresponde exactamente a su norma.

• Las particiones que siguen una progresión geométrica, donde xi = a ∗ r i , donde r es la razón de la
progresión, que es r = n

√
b/a. Estas particiones solo se pueden usar si 0 < a < b.

En el primer caso el álgebra es más simple, ya que (xi − xi−1) = h es constante, de ese modo la desigualdad
(1) queda

∀n ∈ N∗, h ∙
n∑

i=1

(a + h(i − 1))α 6 A(R) 6 h ∙
n∑

i=1

(a + hi)α. (2)

Para calcular las sumatorias, en este primer caso, vamos a suponer que a = 0 y que α solo toma los casos
particulares α = 1, 2 ó 3. Aśı queda

∀n ∈ N∗, h1+α ∙
n∑

i=1

(i − 1)α 6 A(R) 6 h1+α ∙
n∑

i=1

iα. (3)

A continuación haremos todos los cálculos, recordando que las sumatorias para α = 1, 2 ó 3 son conocidas:

• Para α = 1:

∀n ∈ N∗,
b2

n2
∙
(n − 1)n
2

6 A(R) 6
b2

n2
∙
n(n + 1)

2
.

que simplificada queda

∀n ∈ N∗,
b2

2
∙
n − 1
n
6 A(R) 6

b2

2
∙
(n + 1)

n
.

Como esta desigualdad es cierta para todo n, podemos tomar el ĺımite cuando n → ∞, y asi obtener
que

A(R) =
b2

2
=
b ∙ H
2
,

que corresponde a la conocida fórmula del área de un triángulo, obtenida por aproximación de rectán-
gulos internos y externos de ancho cada vez más pequeño.

• Para α = 2:

∀n ∈ N∗,
b3

n3
∙
(n − 1)n(2n − 1)

6
6 A(R) 6

b3

n3
∙
n(n + 1)(2n + 1)

6
.

que simplificada queda

∀n ∈ N∗,
b3

3
∙
(n − 1)(n − 1

2
)

n2
6 A(R) 6

b3

3
∙
(n + 1)(n + 1

2
)

n2
.

Como esta desigualdad es cierta para todo n, podemos tomar el ĺımite cuando n → ∞, y aśı obtener
que

A(R) =
b3

3
=
b ∙ H
3
,

que corresponde a la primera generalización del concepto de área a regiones parabólicas.
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• Finalmente, para α = 3:

∀n ∈ N∗,
b4

n4
∙

[
(n − 1)n
2

]2
6 A(R) 6

b4

n4
∙

[
n(n + 1)

2

]2
.

que simplificada queda

∀n ∈ N∗,
b4

4
∙

[
n − 1
n

]2
6 A(R) 6

b4

4
∙

[
n + 1

n

]2
.

Como esta desigualdad es cierta para todo n, podemos tomar el ĺımite cuando n → ∞, y asi obtener
que

A(R) =
b4

4
=
b ∙ H
4
,

que corresponde a una segunda generalización del concepto de área a regiones bajo parábolas cúbicas.

En el caso de particiones formadas por una progresión geométrica, el álgebra es más complicada, pero las
sumatorias se pueden resolver para todo α > 0. Recordando que los puntos de la partición están definidos
por xi = a ∗ r i , donde r es la razón de la progresión, igual a r = n

√
b/a, se tiene que:

(xi − xi−1) = ar i − ar i−1 = ar i−1(r − 1)

xαi−1 = (ar i−1)α = aα ∙ r (i−1)α

xαi = (ar i)α = aα ∙ r (i−1)α ∙ rα

con esto, la desigualdad (1) queda

∀n ∈ N∗,
n∑

i=1

aα ∙ r (i−1)α ∙ ar i−1(r − 1) 6 A(R) 6 rα ∙
n∑

i=1

aα ∙ r (i−1)α ∙ ar i−1(r − 1).

que reordenado se escribe como

∀n ∈ N∗, aα+1(r − 1)
n∑

i=1

(rα+1)(i−1) 6 A(R) 6 rα ∙ aα+1(r − 1)
n∑

i=1

(rα+1)(i−1).

Aqúı la sumatoria es conocida:
n−1∑

i=0

qi =
qn − 1
q − 1

. luego

∀n ∈ N∗, aα+1(r − 1)
(rn)α+1 − 1
rα+1 − 1

6 A(R) 6 rα ∙ aα+1(r − 1) ∙
(rn)α+1 − 1
rα+1 − 1

.

que reordenada, y consideando que r = n
√
b/a, queda

∀n ∈ N∗, (bα+1 − aα+1) ∙
r − 1
rα+1 − 1

6 A(R) 6 rα ∙ (bα+1 − aα+1) ∙
r − 1
rα+1 − 1

.

Si tomamos el ĺımite cuando n→∞ se tiene que r → 1 y r−1
rα+1−1 →

1
α+1
(su réciproco es la derivada de xα+1

en x = 1). Por lo tanto se obtiene que

A(R) =
bα+1 − aα+1

α + 1
.
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Esta fórmula generaliza las obtenidas con particiones equiespaciadas, y constituye nuestra primera integral de
Riemann, que cómo se verá más adelante corresponde a

∫ b

a

xα =
bα+1 − aα+1

α + 1

Obsérvese que esta fórmula es muy parecida a la fórmula de primitivas que dećıa
∫
xα =

xα+1

α + 1
+ C .

La razón de esta semejanza será vista cuando estudiemos el teorema fundamental del cálculo.

7.3 Integración de funciones escalonadas

En el tratamiento teórico que sigue consideraremos una teoŕıa restringida, en la cual las áreas de las bandas
verticales son muy fáciles de calcular. Se trata de la teoŕıa de integración para funciones escalonadas. Más
tarde mostraremos cómo es posible usar esta teoŕıa restringida, para desarrollar la teoŕıa general. Comenzare-
mos por definir las funciones escalonadas y luego veremos cómo se define su integral de Riemann. Antes de
comenzar, insistamos que en la teoŕıa de Riemann, la función puede tener signo arbitrario (o sea puede ser
positiva o negativa).

Definición 3. Diremos que una función f : [a, b] → R es escalonada, si existe una partición P =
{x0, . . . , xn} tal que f es constante en cada intervalo abierto (xi−1, xi), ∀i = 1, . . . , n.

x0 x1 x2 x3 x4 x5 x

y

Figura 4: Función escalonada en [a, b].

OBS: Las funciones escalonadas sólo toman un número finito de valores diferentes, que son: los valores f (xi)
en los n+1 puntos de la partición y los valores constantes ci que toma en los n intervalos abiertos (xi−1, xi).
Aśı resulta que toda función escalonada es acotada.

OBS: Diremos que P es una partición asociada a f . Esta partición P no es única ya que al subdividir los
intervalos de P , la función f todav́ıa será constante en las subdivisiones que resulten (ver figura 5. Por este
motivo, antes de estudiar propiedades de estas funciones, conviene introducir el siguiente concepto:
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x

y

Figura 5: Otra partición para la misma función escalonada de la Figura 4.

Definición 4. Sean P ,Q son particiones de un mismo intervalo [a, b] ⊂ R. Diremos que Q es un
refinamiento de P, o que Q es más fina que P si se cumple que P ⊆ Q.

OBS: Si P y Q son particiones cualesquiera, no siempre una es refinamiento de la otra, ya que el concepto de
refinamiento NO está asociado directamente a la cantidad de puntos de una partición. Solo podemos decir
que si Q es refinamiento de P , entonces Q tiene una cantidad de puntos mayor o igual que P , pero el rećıproco
es falso. Sin embargo, dadas dos particiones arbitrarias P y Q, siempre existe un refinamiento común a ellas.
En efecto, P ∪ Q es una partición (ordenando sus puntos de menor a mayor) que es refinamiento de P y de
Q simultáneamente.

Proposición 5. Si f : [a, b]→ R es una función escalonada. Si para cada partición P = {x0, . . . , xn}
asociada a f se calcula

I (f ,P) =
n∑

i=1

fi ∙ (xi − xi−1)

donde fi denota al valor constante de f en el intervalo abierto (xi−1, xi). Entonces I (f ,P) no depende de
P, es decir, es una cantidad que depende solamente de f .

Demostración. Sean P ,Q particiones asociadas a f , es decir, particiones tales que f es constante en cada
sub-intervalo definido por cada una de ellas.

P .D.Q : I (f ,P) = I (f ,Q)

Etapa 1) Consideremos primero el caso particular P ⊂ Q tal que Q contiene exactamente un punto más
que P . Digamos Q = {x0, . . . , xn} y P = Q \ {xs}. De este modo tenemos que:

I (f ,Q) =
n∑

i=1

fi ∙ (xi − xi−1)

I (f ,P) =
s−1∑

i=1

fi ∙ (xi − xi−1) + fs(xs+1 − xs−1) +
n∑

i=s+1

fi ∙ (xi − xi−1)
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como P y Q son particiones asociadas a f , entonces f es constante en el intervalo (xs−1, xs+1), aśı fs = fs+1.
Por lo tanto

fs(xs+1 − xs−1) = fs(xs+1 − xs + xs − xs−1) = fs+1(xs+1 − xs) + fs(xs − xs−1)

de donde se obtiene la igualdad.

Etapa 2) Consideremos un segundo caso particular, en que P ⊂ Q cualquiera. Claramente, se puede pasar
de la partición P a la partición Q por medio de particiones intermediarias construidas agregando un punto
cada vez: P = P0 ⊂ P1 ⊂ ∙ ∙ ∙Pk = Q. Usando el resultado anterior, se tiene que

I (f ,P) = I (f ,P1) = ∙ ∙ ∙ = I (f ,Pk) = I (f ,Q).

con lo cual la propiedad queda demostrada para el caso P ⊂ Q.

Etapa 3) En el caso general, basta tomar R = P ∪ Q, que constituye una partición más fina que P y Q
simultáneamente. Aśı, con lo demostrado anteriormente se tiene que

I (f ,P) = I (f ,R) y I (f ,Q) = I (f ,R).

De aqúı se obtiene la igualdad buscada en el caso general.
q.e.d

f1

x0

f2

x1

f3

x2

f4

x3

f5

x4

f6

x5

f7

x6

f8

x7 x8

I (f ,P) = f1 ∙ (x1 − x0) + f2(x2 − x1)︸ ︷︷ ︸
=f1∙(x2−x1)

+ f3 ∙ (x3 − x2) + f4(x4 − x3)︸ ︷︷ ︸
=f3∙(x4−x2)

+f5 ∙ (x5 − x4)
+ f6 ∙ (x6 − x5) + f7(x7 − x6)︸ ︷︷ ︸

=f6∙(x7−x5)

+f8 ∙ (x8 − x7)
x

y

Figura 6: La integral de una función escalonada, no depende de la partición usada en su cálculo.

Definición 6. Para cada función f : [a, b]→ R escalonada, se define su integral de Riemann como

∫ b

a

f =
n∑

i=1

fi ∙ (xi − xi−1),

donde P = {x0, . . . , xn} designa cualquier partición asociada a f y fi denota al valor constante de f en el
correspondiente intervalo abierto (xi−1, xi).

OBS: También se suele usar la notación de Leibniz

∫ b

a

f (x)dx

OBS: La integral de una función escalonada solo depende de los valores de f en los interiores de los intervalos
de la partición y no de los valores de f en los bordes.
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7.4 Propiedades de la integral de funciones escalonadas.

La integral de funciones escalonadas satisface las propiedades enunciadas en los siguientes 4 teoremas:

Teorema 7. (Linealidad) Si f , g son dos funciones escalonadas en el mismo intervalo [a, b]. Entonces,
para todo α, β ∈ R la función αf + βg es una función escalonada en [a, b] y se tiene

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g .

Demostración. Sean f , g funciones escalonadas y sean P y Q particiones asociadas a f y g respectivamente
(no necesariamente las mismas). Claramente la partición R = P ∪ Q, que es un refinamiento común de P
y Q está asociada a f y g simultáneamente. (en efecto, pensemos en f : cada intervalo abierto definido por
la partición R está incluido en un intervalo abierto definido por P , donde f es constante. Análogo para g).
Luego, si escribimos R = {x0, . . . , xn}, resulta que

∫ b

a

f =
n∑

i=1

fiΔxi y

∫ b

a

g =
n∑

i=1

giΔxi

donde fi y gi denotan los valores constantes de f y g en cada intervalo abierto (xi−1, xi).

Sean α, β ∈ R. Claramente la función h = αf + βg satisface:

h(x) = αfi + βgi = hi , ∀x ∈ (xi−1, xi)

por lo tanto es una función escalonada y su integral vale

∫ b

a

h =
n∑

i=1

hiΔxi =
n∑

i=1

(αfi + βgi)Δxi =
n∑

i=1

αfiΔxi +
n∑

i=1

βgiΔxi = α

∫ b

a

f + β

∫ b

a

g .

q.e.d

Teorema 8. (Aditividad horizontal) Si f es una función escalonada en el intervalo [a, b] (donde a < b)
y si c ∈ (a, b) es arbitrario. Entonces, f es una función escalonada en ambos intervalos [a, c] y [c , b] y
se tiene que ∫ b

a

f =

∫ c

a

f +

∫ b

c

f .

Demostración. Sea f una función escalonada en [a, b], sea P una partición asociada a f y sea c ∈ (a, b).
Claramente la partición R = P ∪ {c}, es un refinamiento de P y por lo tanto, también está asociada a f (en
efecto, cada intervalo abierto definido por la partición R está incluido en un intervalo abierto definido por P ,
donde f es constante). Para fijar ideas, digamos que R = {x0, . . . , xn}, donde x0 = a, xm = c y xn = b,
donde 0 < m < n y que f (x) = fi en cada intervalo abierto (xi−1, xi), con i ∈ {1, . . . , n}.
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Claramente ∫ b

a

f =
n∑

i=1

fiΔxi .

Ahora, definiendo P1 = R ∩ [a, c] = {x0, . . . , xm} y P2 = R ∩ [c .b] = {xm, . . . , xn}, se han formado dos
particiones, la primera del intervalo [a, c] y la otra del intervalo [c , b]. Como f es constante en cada intervalo
abierto definido por P1 (que son algunos de los intervalos abiertos definidos por R), f resulta ser escalonada
en [a, c] y su integral vale

∫ c

a

f =
m∑

i=1

fiΔxi .

Análogamente, f es escalonada en [c .b] y su integral vale

∫ b

c

f =
m∑

i=m+1

fiΔxi .

Sumando ambas integrales se obtiene que

∫ c

a

f +

∫ b

c

f =
m∑

i=1

fiΔxi +
m∑

i=m+1

fiΔxi =
n∑

i=1

fiΔxi =

∫ b

a

f .

q.e.d

Teorema 9. (Monotońıa) La integral de una función escalonada positiva en el intervalo [a, b] es positiva.
En consecuencia, si f , g son funciones escalonadas en el intervalo [a, b] tales que f (x) 6 g(x) para todo
x ∈ [a, b], se tiene que ∫ b

a

f 6
∫ b

a

g .

Demostración propuesta al lector.
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7.5 Funciones Riemann integrables

En esta sección, veremos como se puede definir la Integral de Riemann para una clase muy amplia de funciones.
En realidad, con esta teoŕıa se puede integrar prácticamente cualquier función encontrada en ingenieŕıa.

Inicialmente, no pondremos condiciones sobre la función f que trataremos. Puede ser continua o no. Sólo
impondremos que se trate de una función bien definida en un intervalo cerrado y acotado [a, b], con a < b y que
sea acotada en dicho intervalo (es decir, que existan m = inf{f (x) : x ∈ [a, b]} yM = sup{f (x) : x ∈ [a, b]}).

Con estas únicas condiciones, que son bastante generales, se puede demostrar el siguiente teorema:

Teorema 10. Si f es una función definida y acotada en [a, b] arbitraria, entonces se cumple que:

1. Los siguientes conjuntos son no vaćıos:

• E−(f ) es el conjunto de todas las funciones escalonadas que minoran a f , es decir, aquellas
funciones escalonadas e tales que ∀x ∈ [a, b], e(x) 6 f (x).

• E+(f ) es el conjunto de todas las funciones escalonadas que mayoran a f , es decir, aquellas
funciones escalonadas e tales que ∀x ∈ [a, b], f (x) 6 e(x).

2. Siempre existen las cantidades

I−(f ) = sup
{∫ b

a

e : e ∈ E−
}
, I+(f ) = inf

{∫ b

a

e : e ∈ E+
}
,

llamadas integral inferior e integral superior de f en [a, b] respectivamente.

3. Estas integrales verifican la desigualdad

I−(f ) 6 I+(f ).

Demostración. 1) Primero notamos que al ser f acotada en [a, b], existen

m = inf
x∈[a,b]

f (x), M = sup
x∈[a,b]

f (x)

de modo que las funciones escalonadas f−(x) = m y f+(x) = M son elementos de E− y E+ respectivamente.
Aśı, esos conjuntos no son vaćıos.

2) Por otro lado, si F ∈ E− y G ∈ E+ se cumple que

F (x) 6 G (x), ∀x ∈ [a, b].

por lo tanto

∀F ∈ E−,

(

∀G ∈ E+,
∫ b

a

F 6
∫ b

a

G

)

El paréntesis de la expresión anterior indica que el conjunto
{∫ b
a
e : e ∈ E+

}
es acotado inferiormente por
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el real
∫ b
a
F . En consecuencia su ı́nfimo existe y cumple:

∀F ∈ E−,
∫ b

a

F 6 inf
{∫ b

a

e : e ∈ E+
}
.

Esta última desigualdad indica que el conjunto
{∫ b
a
e : e ∈ E−

}
es acotado superiormente y su supremo

satisface la relación

sup
{∫ b

a

e : e ∈ E−
}
6 inf

{∫ b

a

e : e ∈ E+
}
.

Esto prueba que las cantidades I−(f ) (Integral inferior) y I+(f ) (Integral superior) de f siempre existen.
Además se cumple la relación

I−(f ) 6 I+(f ), ∀f definida y acotada en [a, b].

q.e.d

La duda que queda en el teorema anterior, es si la última desigualdad es o no estricta. Pues bien, con
las hipótesis generales que hemos puesto, resulta que algunas funciones satisfacen la igualdad y otras la
desigualdad estricta. En el último caso, habŕıan 2 integrales para la misma función, lo cual no es útil. Por
esa razón, dichas funciones se descartan de la teoŕıa y se dice que no son Riemann integrables.

Cuando se cumple la igualdad, el cálculo resultante es muy útil y por eso se hace la siguiente definición:

Definición 11. Con las notaciones del teorema anterior, se dice que una función f definida y acotada
en el intervalo cerrado [a, b] es Riemann integrable en [a, b] si se cumple la

I−(f ) = I+(f ).

Dicho número común se llama la integral de f en el intervalo [a, b] y se le denota por

∫ b

a

f o bien

∫ b

a

f (x)dx (Notación de Leibniz).

Después de entender la definición previa, surge la pregunta: ¿Cuales son las funciones Riemann integrables?
o ¿Cómo saber si una función dada es o no Riemann integrable? Para responder a esta última pregunta, es
útil demostrar el siguiente teorema, que caracteriza totalmente a las funciones Riemann integrables.

Ejemplo 12 (Una función NO Riemann integrable). Consideremos la función

f (x) =

{
1 si x ∈ Q

0 si x ∈ I

esta función no es Riemann integrable en [a, b] ya que: Si e− es una función escalonada tal que e−(x) 6
f (x), ∀x ∈ [a, b], entonces en cada intervalo abierto (xi−1, xi) se tendrá que e−i 6 0, de modo que∫ b

a

e−(x) 6 0.

12



Análogamente, si e+(x) es una función escalonada mayorante, es decir que cumple e+(x) >6 f (x), ∀x ∈

[a, b], entonces, en cada intervalo donde e+ es constante se tendrá que e+i > 1 y por lo tanto
∫ b

a

e+ > (b−a).

Con esto,

∫ b

a

(e+ − e−) > (b − a), con lo cual no es posible cumplir la condición de Riemann.

Teorema 13 (Condición de Riemann). Una función f definida y acotada en el intervalo cerrado [a, b]
es Riemann integrable en [a, b] si y solamente si

“ ∀ε > 0 existen f− ∈ E− y f+ ∈ E+ tales que
∫ b

a

f+ −
∫ b

a

f− 6 ε.
′′

Demostración. Primero veamos que la condición de Riemann es suficiente:

Sea ε > 0 arbitrario. Sabemos que existen funciones escalonadas f−(x) ∈ E− y f+(x) ∈ E+ tales que

∫ b

a

f+ −
∫ b

a

f− 6 ε. (4)

Pero, ∫ b

a

f− 6 I−(f ) 6 I+(f ) 6
∫ b

a

f+

Es decir, usando (4) se obtiene que

∀ε > 0, |I+(f )− I−(f )| 6 ε

de donde se obtiene que I−(f ) = I+(f ) y aśı f resulta ser Riemann integrable.

Rećıprocamente, si f es Riemann integrable en [a, b], sabemos que I−(f ) = I+(f ). Pero, (por definición de
infimo y supremo) para todo ε > 0 existen funciones escalonadas f−(x) ∈ E− y f+(x) ∈ E+ tales que

I−(f )−
ε

2
6
∫ b

a

f−,

∫ b

a

f+ 6 I+(f ) +
ε

2
.

de aqúı, restando se tiene que ∫ b

a

f+ −
∫ b

a

f− 6 ε.

con lo cual la función satisface la condición de Riemann.
q.e.d
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SEMANA 8

Funciones Riemann Integrables

En esta sección veremos como la condición de Riemann permite demostrar que tanto las funciones monótonas
en [a, b] (no necesariamente continuas) y las funciones continuas en [a, b], son ambas clases de funciones
Riemann integrables. Esta propiedad la estudiaremos en detalle en los próximos 2 teoremas:

Teorema 14. Toda función monótona en [a, b] es Riemann integrable en [a, b].

Demostración. Para fijar ideas, supongamos que f es creciente en [a, b]. Tomemos una partición P =
{x0, . . . , xn} cualquiera del intervalo [a, b] y construyamos las siguientes funciones escalonadas definidas en
los intervalos (xi−1, xi) por:

f−(x) = f (xi−1) si x ∈ (xi−1, xi)

f+(x) = f (xi) si x ∈ (xi−1, xi)

e iguales a f (xi) en cada punto de la partición.

y = f+(x)

x1 x2 x3 xn−1 xn = bx0 = a

x

y

y = f (x)
y = f−(x)

Claramente, para todo x ∈ [a, b] se tiene f−(x) 6 f (x) 6 f+(x).

Además: ∫ b

a

f− =
n∑

i=1

f (xi−1)Δxi ,

∫ b

a

f+ =
n∑

i=1

f (xi)Δxi .

de modo que
∫ b

a

(f+ − f−) =
n∑

i=1

(
f (xi)− f (xi−1)

)
Δxi 6 |P |(f (b)− f (a))

Para que esta diferencia sea menor que ε > 0 arbitrario, basta tomar cualquier partición P de modo que su
norma sea lo suficientemente pequeña. (|P | 6 ε

f (b)−f (a)+1) q.e.d
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Teorema 15. Toda función continua en [a, b] es Riemann integrable en [a, b].

Demostración. Tomemos una partición P = {x0, . . . , xn} cualquiera del intervalo [a, b] y construyamos las
siguientes funciones escalonadas definidas en los intervalos (xi−1, xi) por:

f−(x) = min
x∈[xi−1,xi ]

f (x) si x ∈ (xi−1, xi)

f+(x) = max
x∈[xi−1,xi ]

f (x) si x ∈ (xi−1, xi)

e iguales a f (xi) en cada punto de la partición.

Claramente, para todo x ∈ [a, b] se tiene f−(x) 6 f (x) 6 f+(x).

Además: ∫ b

a

f− =
n∑

i=1

min
x∈[xi−1,xi ]

f (x)Δxi ,

∫ b

a

f+ =
n∑

i=1

max
x∈[xi−1,xi ]

Δxi .

de modo que

Δ =

∫ b

a

(f+ − f−) =
n∑

i=1

(
max

x∈[xi−1,xi ]
f (x)− min

x∈[xi−1,xi ]
f (x)

)
Δxi

Como f es continua en [a, b], en cada intervalo [xi−1, xi ], f alcanza su ḿınimo y su máximo. Digamos que

min
x∈[xi−1,xi ]

f (x) = f (si) y max
x∈[xi−1,xi ]

f (x) = f (ti)

donde si , ti ∈ [xi−1, xi ].

Ahora recordamos que las funciones continuas en un compacto [a, b] son uniformemente continuas en [a, b],
por lo tanto, para cada ε > 0 arbitrario, existe un δ > 0 tal que para cualquier par de puntos s, t ∈ [a, b]
tales que |s − t| 6 δ se cumple que:

|f (s)− f (t)| 6
ε

b − a
.

La demostración concluye tomando cualquier partición P de modo que su norma sea menor o igual a δ, aśı
aseguramos que |si − ti | 6 δ y con esto resulta que:

Δ 6
n∑

i=1

( ε

b − a

)
Δxi = ε.

q.e.d

Observación 16. En la demostración de ambos teoremas, se han usado las funciones escalonadas definidas
en los intervalos (xi−1, xi) por:

f−(x) = mi(f ) = inf
x∈[xi−1,xi ]

f (x) si x ∈ (xi−1, xi)

f+(x) = Mi(f ) = sup
x∈[xi−1,xi ]

f (x) si x ∈ (xi−1, xi)
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e iguales a f (xi) en cada punto de la partición.

Con ellas se tiene que

∫ b

a

f− =
n∑

i=1

mi(f )Δxi

∫ b

a

f+ =
n∑

i=1

Mi(f )Δxi

que suelen llamarse suma inferior y suma superior de f asociadas a P, y se denotan respectivamente por
s(f ,P) y S(f ,P).

Pues bien, en ambos casos (funciones monótonas y/o continuas) existe δ > 0 de modo que si |P | 6 δ se
obtiene S(f ,P)− s(f ,P) 6 ε

Estas sumas son interesantes, pero no tan fáciles de calcular, debido a las definiciones de mi y Mi . Por este
motivo muchas veces se suele usar la suma obtenida por la integración de una función escalonada intermediaria,
la cual se define en cada intervalo (xi−1, xi) por:

f∗(x) = f (si) si x ∈ (xi−1, xi)

donde los reales si son arbitrarios del intervalo [xi−1, xi ]. Claramente en este caso:

s(f ,P) 6
∫ b

a

f∗ =
n∑

i=1

f (si)Δxi 6 S(f ,P)

La sumatoria intermedia se conoce como suma de Riemann.

Como la integral de f también satisface la desigualdad

s(f ,P) 6
∫ b

a

f 6 S(f ,P)

se concluye que:

∀ε > 0, ∃δ > 0, ∀P partición de [a, b], |P | 6 δ =⇒

∣
∣
∣
∣
∣

n∑

i=1

f (si)Δxi −
∫ b

a

f

∣
∣
∣
∣
∣
6 ε

Esta propiedad es una de las motivaciones de la notación de Leibniz, entendiendo que la integral es el ĺımite
de una sumatoria, es decir: ∫ b

a

f (x)dx = lim
|P|→0

n∑

i=1

f (si)Δxi .

En este ĺımite la variable que tiende a cero es la norma de la partición P (|P | → 0) y se calcula sobre las sumas
de Riemann. Esto explica el uso del signo integral (especie de S alargada, como ĺımite del signo sumatoria)
y de la notación de Leibnitz, donde el f (x)dx representa al sumando f (si)Δxi .
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8.1 Propiedades de la Integral

Con las dos clases de funciones encontradas en la sección previa, tenemos muchas funciones a las que se le
puede definir su integral. Sin embargo, esta clase puede crecer aun más si se combinan funciones y se aplican
las propiedades que demostraremos en los siguientes 4 teoremas:

Teorema 17. (Linealidad) Si f , g son dos funciones Riemann integrables en el mismo intervalo [a, b].
Entonces, para todo α, β ∈ R la función αf + βg es una función Riemann integrable en [a, b] y se tiene

∫ b

a

(αf + βg) = α

∫ b

a

f + β

∫ b

a

g .

Demostración. (Caso de la suma de funciones integrables)
Si f , g son Riemann integrables en [a, b], entonces para cada ε > 0 existen funciones escalonadas f−(x), f+(x), g−(x)
y g+(x) tales que

f−(x) 6 f (x) 6 f+(x), g−(x) 6 g(x) 6 g+(x), ∀x ∈ [a, b] (5)

y ∫ b

a

f+ −
∫ b

a

f− 6
ε

2
, y

∫ b

a

g+ −
∫ b

a

g− 6
ε

2
. (6)

Sumando en (5) se obtiene que

f−(x) + g−(x) 6 f (x) + g(x) 6 f+(x) + g+(x), ∀x ∈ [a, b] (7)

y usando (6) resulta que ∫ b

a

[f+ + g+]−
∫ b

a

[f− + g−] 6 ε, (8)

de donde se deduce que f + g es Riemann integrable en [a, b].

Además de (6) se pueden escribir las siguientes desigualdades (útiles en lo que sigue):

∫ b

a

f −
ε

2
6
∫ b

a

f− 6
∫ b

a

f 6
∫ b

a

f+ 6
∫ b

a

f +
ε

2
(9)

∫ b

a

g −
ε

2
6
∫ b

a

g− 6
∫ b

a

g 6
∫ b

a

g+ 6
∫ b

a

g +
ε

2
(10)

De (7) se tiene que ∫ b

a

f− +

∫ b

a

g− 6
∫ b

a

[f + g ] 6
∫ b

a

f+ +

∫ b

a

g+

que combinada con (9) y (10) se transforma en

∫ b

a

f +

∫ b

a

g − ε 6
∫ b

a

[f + g ] 6
∫ b

a

f +

∫ b

a

g + ε
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Esta última expresión dice que para todo ε > 0 se cumple
∣
∣
∣
∣

∫ b

a

[f + g ]−

(∫ b

a

f +

∫ b

a

g

)∣∣
∣
∣ 6 ε

de donde se deduce la igualdad ∫ b

a

[f + g ] =

∫ b

a

f +

∫ b

a

g

(Caso de la ponderación de funciones integrables)
Sea f una función Riemann integrable y sea α > 0. (Si α = 0 claramente αf es integrable y su integral es
0).

Para todo ε > 0 existen funciones escalonadas f−(x) y f+(x) tales que:

f−(x) 6 f (x) 6 f+(x), ∀x ∈ [a, b] (11)

y ∫ b

a

f+ −
∫ b

a

f− 6
ε

α
. (12)

Multiplicando (11) por α > 0 se obtiene que

αf−(x) 6 αf (x) 6 αf+(x), ∀x ∈ [a, b] (13)

y usando (12) resulta que ∫ b

a

[αf+]−
∫ b

a

[αf−]dx 6 ε, (14)

de donde se deduce que αf es Riemann integrable en [a, b].

Además de (12) se puede escribir la siguiente desigualdad (útiles en lo que sigue):

∫ b

a

f −
ε

α
6
∫ b

a

f− 6
∫ b

a

f 6
∫ b

a

f+ 6
∫ b

a

f +
ε

α
(15)

De (13) se tiene que

α

∫ b

a

f− 6
∫ b

a

αf 6 α
∫ b

a

f+

que combinada con (15) se transforma en

α

∫ b

a

f − ε 6
∫ b

a

αf 6 α
∫ b

a

f + ε

Esta última expresión dice que para todo ε > 0 se cumple
∣
∣
∣
∣

∫ b

a

αf −

(

α

∫ b

a

f

)∣∣
∣
∣ 6 ε

de donde se deduce la igualdad ∫ b

a

αf = α

∫ b

a

f
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Para terminar con el caso α < 0, basta con probar que si f es Riemann integrable en [a, b], entonces −f es
Riemann integrable en [a, b]. En efecto, para cada ε > 0 existen funciones escalonadas f− y f+ tales que:

f−(x) 6 f (x) 6 f+(x), ∀x ∈ [a, b] (16)

y ∫ b

a

f+ −
∫ b

a

f− 6 ε. (17)

Multiplicando (16) por −1 se obtiene que

− f+(x) 6 −f (x) 6 −f−(x), ∀x ∈ [a, b] (18)

y usando (17) resulta que ∫ b

a

[−f−]−
∫ b

a

[−f+] 6 ε, (19)

de donde se deduce que −f es Riemann integrable en [a, b].

Además de (17) se puede escribir la siguiente desigualdad (útiles en lo que sigue):

∫ b

a

f − ε 6
∫ b

a

f− 6
∫ b

a

f 6
∫ b

a

f+ 6
∫ b

a

f + ε (20)

De (18) se tiene que

−
∫ b

a

f+x 6
∫ b

a

(−f ) 6 −
∫ b

a

f−

que combinada con (20) se transforma en

−
∫ b

a

f − ε 6
∫ b

a

−f 6 −
∫ b

a

f + ε

Esta última expresión dice que para todo ε > 0 se cumple
∣
∣
∣
∣

∫ b

a

(−f )−

(

−
∫ b

a

f

)∣∣
∣
∣ 6 ε

de donde se deduce la igualdad ∫ b

a

−f = −
∫ b

a

f

q.e.d

Teorema 18. (Aditividad horizontal) Si f es una función definida y acotada en [a, b] entonces f es
Riemann integrable en [a, b] si y solamente si, para cada c ∈ (a, b) arbitrario se tiene que f es Riemann
integrable en ambos intervalos [a, c] y [c , b].
En tal caso se tiene que ∫ b

a

f =

∫ c

a

f +

∫ b

c

f .
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Demostración propuesta al lector.

Teorema 19. (Monotońıa) La integral de una función Riemann integrable positiva en el intervalo [a, b]
es positiva; en consecuencia, si f , g son funciones Riemann integrables en [a, b] tales que f (x) 6 g(x)
para todo x ∈ [a, b], se tiene que ∫ b

a

f 6
∫ b

a

g .

Demostración propuesta al lector.

Teorema 20. (Desigualdad triangular) Si f es una función Rieman integrable en [a, b], entonces |f | es
Riemann integrable en [a, b] y se tiene que

∣
∣
∣
∣

∫ b

a

f

∣
∣
∣
∣ 6

∫ b

a

|f |.

En consecuencia, si |f (x)| 6 M para todo x ∈ [a, b], se cumple

∣
∣
∣
∣

∫ b

a

f

∣
∣
∣
∣ 6 M(b − a).

Demostración. Sea f una función R-I en [a, b]. Para cada ε > 0 existen funciones escalonadas f−(x) y f+(x)
tales que:

f−(x) 6 f (x) 6 f+(x), ∀x ∈ [a, b] (21)

y ∫ b

a

f+ −
∫ b

a

f− 6 ε. (22)

Como es habitual, se descompone la función f en la diferencia de dos funciones positivas, del modo siguiente:

P(x) =

{
f (x) si f (x) > 0

0 si f (x) < 0
y N(x) =

{
0 si f (x) > 0

−f (x) si f (x) < 0

Aśı se tiene que f = P −N y |f | = P +N . La demostración se concluye probando que P es R-I en [a, b], ya
que por algebra se deduce que N también lo es y en consecuencia |f |.

Claramente de (21) se deduce que en cada punto donde f (x) > 0 se tiene que

f−(x) 6 P(x) 6 f+(x).

En los puntos donde f (x) < 0, resulta que P(x) = 0, por lo tanto queda

0 6 P(x) 6 0

. De este modo construimos las funciones escalonadas siguientes:

P+(x) =

{
f+(x) si f+(x) > 0

0 si f+(x) < 0
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P−(x) =

{
f−(x) si f+(x) > 0

0 si f+(x) < 0

que claramente satisfacen:
P−(x) 6 P(x) 6 P+(x)

y ∫ b

a

(P+ − P−) 6
∫ b

a

(f+ − f−) 6 ε.

Luego, P es Riemann integrable en [a, b] y en consecuencia N y |f |.
q.e.d

8.2 Integral de a a b con a > b

Definición 21. Sea f una función integrable en un intervalo [p, q]. Si a, b ∈ [p, q] son tales que a > b
entonces se define la integral de a a b del modo siguiente:

∫ b

a

f = −
∫ a

b

f si a > b, o

∫ b

a

f = 0 si a = b.

con esta definición, las propiedades de la integral se pueden enunciar aśı:

Proposición 22. Sean f y g integrales en [p, q] y a, b ∈ [p, q] entonces:

1)

∫ b

a

α = α(b − a), ∀α ∈ R

2)

∫ b

a

f =

∫ c

a

f +

∫ b

c

f , ∀c ∈ [p, q]

3)

∫ b

a

αf = α

∫ b

a

f , ∀α ∈ R

4)

∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g

5) 0 6 f (x) 6 g(x), ∀x ∈ [p, q]⇒
∣
∣
∣
∫ b
a
f
∣
∣
∣ 6

∣
∣
∣
∫ b
a
g
∣
∣
∣

6)
∣
∣
∣
∫ b
a
f
∣
∣
∣ 6

∣
∣
∣
∫ b
a
|f |
∣
∣
∣

Demostración. La demostraciones son sencillas y se dejan propuestas como ejercicios. q.e.d
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