SEMANA 7

Integral de Riemann

7.1 Introduccion

La teoria de la integral de Riemann tiene un objetivo simple, que es: formalizar la nocién de drea mediante
una definiciéon que sea compatible con las ideas comunes e intuitivas acerca de este concepto.

Surge entonces la pregunta de ;Cuales son estas ideas basicas?. Por ejemplo, una de ellas es que el area
de una superficie cuadrada de lado a sea a®. Si esto es verdadero, se debe concluir que la superficie de un
rectangulo de lados ay b es a- b.

7.2 Condiciones basicas para una definicion de area

Sea E un conjunto de puntos en el plano OXY. El drea del conjunto E serd un ndmero real A(E) que cumple
las siguientes condiciones.

) A(E) >

A2) EC F = A(E) < A(F)

A3) Si A(ENF) =0= A(EUF) = A(E) + A(F)

A4) El area de una regién rectangular E de lados ay bes A(E)=a- b
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Estas 4 condiciones son necesarias y suficientes para tener una buena definicidén de area. Se vera mas adelante,
en el transcurso del curso, que la integral de Riemann las satisface adecuadamente.

Observaciéon 1. Las cuatro propiedades elementales anteriores no son independientes entre si, ya que por
ejemplo (A2) es una consecuencia de (A1) y (A3)

Mediante la integral de Riemann se definira el area de una regidn E particular: Dada una funcién f : [a, b] —
R, consideremos la regién R limitada por el eje OX, la curva de ecuacién y = f(x) y las rectas verticales
x =ay x = b. El area de esta regién se llamara drea bajo la curva y = f(x) entre ay b.

y
y = f(x)
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Figura 1: Regién bajo una curva positiva.



Mediante un ejemplo se mostrarda un método para determinar el drea bajo una curva, que nos indicara el
procedimiento a seguir en la definicién de la integral de Riemann.

Por el momento, nos concentramos en la propiedad Az, que sugiere dividir la regién R en regiones mds
pequenas. Por este motivo, el primer elemento que incorpora la definiciéon de integral de Riemann es el
concepto de particiéon, que sirve intuitivamente, para dividir la regién R en bandas verticales, como se muestra
en la figura 2. Antes de dar la definicidon formal de este concepto, mencionemos que la idea de cortar la regidn
R por bandas verticales es una de las caracteristica mds notable de la idea de Riemann. La otra integral que
a veces se menciona en los cursos matematicos es la de Lebesgue, que se caracteriza por dividir la region R
cortando en el eje OY de las imagenes. La gran complicacién de esa teoria alternativa, es que por un lado
se deben manipular los conjuntos preimagenes y por otro lado estos conjuntos pueden ser de geometria muy
compleja.

y = f(x)
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Figura 2: Regién R cortada por bandas verticales.

Definicién 2. Una particién de un intervalo [a, b] C R es un conjunto finito de puntos P = {xo, ..., Xn}
tales que
a=x<xx<---<x,=b
Se llama norma de la particion P al real |P| = _max (xi — xi—1)
i=1,...,n

1

Una vez que la regién R se ha dividido, hay que calcular el drea de cada una de las bandas verticales. Es
en este momento, donde las complicaciones comienzan. Todo depende de lo complicada que sea la funcién
tratada. En lo que sigue de esta seccidn, se explota esta idea hasta sus tltimas consecuencias, pero solamente
par la funcién y = x.

Ejemplo

Dada la funcién f(x) = x*, donde o > 0, se desea calcular el drea encerrada entre x = ay x = b > 0 bajo
la curva y = f(x), es decir, calcular el 4rea de R = {(x,y) € R?> : x € [a,b],0 < y < x°}.



Para estimar el drea de la regién R comenzamos por considerar una particién arbitraria del intervalo [a, b].

Digamos P = {xo, . .

., X»} (ver dibujo de la pizarra).

La segunda idea importante es "acotar". Para ello, en cada subintervalo [x;_1, x;] definido por la particién P,
levantamos rectangulos por dentro y por fuera de la region considerada. Para que las cotas sean "lo mejor
posible", se levantan rectdngulos inscritos lo mas altos posibles y rectdngulos exteriores lo mds bajos posible.

y

Es asi como:

Con esto claramente

y
y = e y = X%
R; Ri
Xi—1 Xj b X a Xi—1 Xj b X

Figura 3: Cotas inferior y superior de R;

R; = [xi-1, x] x [0, x4]

F,’ = [X,',]_,X,'] X [O,X,q_]_]

Ahora usamos las propiedades A,, A; de drea para deducir que

zn: AR) <AR) <Y _A(R)

i=1

Usando la propiedad A4 de drea, concluimos que

VP particién de [a, b], Zxﬁ‘il(x,- —x;-1) < A(R) < Zx,-a(x,- — Xj_1).

i=1 i=1



Para terminar con nuestras estimaciones, hay que calcular explicitamente las sumatorias. Para ello debemos
considerar casos especiales de las particiones, donde el célculo es realizable con algebra elemental.

Para situaciones especiales como la aqui considerada, usaremos principalmente dos tipos de particiones espe-
ciales:

b—a
n

b—a

e Las particiones equi-espaciadas donde x; = a + i % -

particion, y corresponde exactamente a su norma.

. Aqui el factor h = se llama el paso de la

e Las particiones que siguen una progresién geométrica, donde x; = a * r’, donde r es la razén de la
progresion, que es r = {/b/a. Estas particiones solo se pueden usar si 0 < a < b.

En el primer caso el dlgebra es mas simple, ya que (x; — x;_1) = h es constante, de ese modo la desigualdad
(1) queda

VneN*, h-) (a+h(i—1)* <AR)<h-> (a+ hi). (2)
i=1 i=1

Para calcular las sumatorias, en este primer caso, vamos a suponer que a = 0 y que « solo toma los casos
particulares « = 1,2 6 3. Asi queda

n n

VneN*, hTe N (i - 1) < AR) < AT 0 (3)

i=1 i=1

A continuacién haremos todos los calculos, recordando que las sumatorias para a = 1,2 é 3 son conocidas:

e Paraa=1:

b> (n—1)n > n(n+1)
= <AR) L= —~,
vne N, n? 2 (k) n? 2
que simplificada queda
b? -1 b? 1
vnen, .- gA(/i>)<?-("+ ),
Como esta desigualdad es cierta para todo n, podemos tomar el limite cuando n — oo, y asi obtener
que
b> b-H
AR)= — = —,
2 2

que corresponde a la conocida férmula del drea de un triangulo, obtenida por aproximacién de rectan-
gulos internos y externos de ancho cada vez mas pequeno.

e Para a =2: 53 (o ) 53 (2 )
dmene, B DRn=1) e B on(n s 1)@n 1)
n3 6 n3 6

que simplificada queda

B (n—1)(n-}) _B (1t

i N*, — < A(R) € .
ne 3 n? (R) 3 n?
Como esta desigualdad es cierta para todo n, podemos tomar el limite cuando n — oo, y asi obtener
que
b* b-H
AR)=— = —,
3 3

que corresponde a la primera generalizacion del concepto de area a regiones parabdlicas.
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e Finalmente, para a = 3:

Vn € N, 5_:: [@r < A(R) < i [Mr

que simplificada queda

4 o 2 4 2
Vn e N, b—-{” 1} gA(R)gb—-[”H]
4 n n

Como esta desigualdad es cierta para todo n, podemos tomar el limite cuando n — oo, y asi obtener

que
b* b-H
ARR)=—=——,
4 4
que corresponde a una segunda generalizacién del concepto de area a regiones bajo pardbolas cubicas.
En el caso de particiones formadas por una progresién geométrica, el algebra es mas complicada, pero las

sumatorias se pueden resolver para todo a > 0. Recordando que los puntos de la particidon estan definidos
por x; = a* r', donde r es la razén de la progresién, igual a r = {/b/a, se tiene que:

(xi —xi1) = ar'—art=ar"(r-1)
qu_l — (ari—l)a — 3¢ r(i—l)a
X;l _ (ari)a — 3%. r(i—l)a e

con esto, la desigualdad (1) queda

Vn e N, Z a® - 0=V g =1(r —1) < AR) < r® - Z a® - =D gri=1(r — 1),
i=1 i=1

que reordenado se escribe como

Vn € N*. aa+1 Z o+1 (: 1) A(R) <r. ao‘H(r o 1) (ra—i-l)(i—l).
i=1 i=1
n—1 qn 1
Aqui | tori ida: = o
qui la sumatoria es conocida ; q — - luego
. o (rm)et -1 o o (rm)et -1
VnEN, a+1(r—l)W<A(R)§r-a+1(r—1)-ﬁ
que reordenada, y consideando que r = {/b/a, queda
* o o r—1 a (e e r—1
VHEN, (b+1—a+1)-ra+1—_1§A(R)§r'(bH—aH)'m.
Si tomamos el limite cuando n — oo se tieneque r — 1y Wl — = (su réciproco es la derivada de x**1

en x = 1). Por lo tanto se obtiene que

ba+1_aa+1
AR )= ———
() a+1



Esta férmula generaliza las obtenidas con particiones equiespaciadas, y constituye nuestra primera integral de
Riemann, que cémo se verd mds adelante corresponde a

b N ba—l—l _ aa+1
X' = —
a a+1
Obsérvese que esta férmula es muy parecida a la férmula de primitivas que decia

a+1
/xo‘:X + C.
a—+1

La razén de esta semejanza serd vista cuando estudiemos el teorema fundamental del calculo.

7.3 Integracion de funciones escalonadas

En el tratamiento tedrico que sigue consideraremos una teoria restringida, en la cual las dreas de las bandas
verticales son muy faciles de calcular. Se trata de la teoria de integracién para funciones escalonadas. Mas
tarde mostraremos cdmo es posible usar esta teoria restringida, para desarrollar la teoria general. Comenzare-
mos por definir las funciones escalonadas y luego veremos cémo se define su integral de Riemann. Antes de
comenzar, insistamos que en la teoria de Riemann, la funcién puede tener signo arbitrario (o sea puede ser
positiva o negativa).

Definicién 3. Diremos que una funcién f : [a,b] — R es escalonada, si existe una particion P =
{Xo,...,xn} tal que f es constante en cada intervalo abierto (x;_1,x;), Vi=1,...,n.

.
y \ i \
 S— - L
| 3 o | L

X‘O )él X2 X3 Xa X5 X

Figura 4: Funcién escalonada en [a, b].

OBS: Las funciones escalonadas sélo toman un nimero finito de valores diferentes, que son: los valores f(x;)
en los n+ 1 puntos de la particién y los valores constantes ¢; que toma en los n intervalos abiertos (x;_1, x;).
Asi resulta que toda funcidén escalonada es acotada.

OBS: Diremos que P es una particién asociada a f. Esta particiéon P no es Unica ya que al subdividir los
intervalos de P, la funcién f todavia serd constante en las subdivisiones que resulten (ver figura 5. Por este
motivo, antes de estudiar propiedades de estas funciones, conviene introducir el siguiente concepto:
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Figura 5: Otra particién para la misma funcién escalonada de la Figura 4.

Definicién 4. Sean P, Q son particiones de un mismo intervalo [a, b] C R. Diremos que Q es un
refinamiento de P, o que Q es mas fina que P si se cumple que P C Q.

OBS: Si Py @ son particiones cualesquiera, no siempre una es refinamiento de la otra, ya que el concepto de
refinamiento NO estd asociado directamente a la cantidad de puntos de una particién. Solo podemos decir
que si @ es refinamiento de P, entonces @ tiene una cantidad de puntos mayor o igual que P, pero el reciproco
es falso. Sin embargo, dadas dos particiones arbitrarias P y Q, siempre existe un refinamiento comdn a ellas.
En efecto, P U @ es una particién (ordenando sus puntos de menor a mayor) que es refinamiento de P y de
@ simultdneamente.

s A

Proposicién 5. Sif : [a, b] — R es una funcion escalonada. Si para cada particion P = {xg, ..., Xn}
asociada a f se calcula

I(f, P) = Z £ - (6 — xi_1)

donde f; denota al valor constante de f en el intervalo abierto (x;_1, x;). Entonces I(f, P) no depende de
P, es decir, es una cantidad que depende solamente de f.

Demostracion. Sean P, @ particiones asociadas a f, es decir, particiones tales que f es constante en cada
sub-intervalo definido por cada una de ellas.

P.D.Q: I(f,P)=I(f, Q)

Etapa 1) Consideremos primero el caso particular P C @ tal que @ contiene exactamente un punto mds
que P. Digamos Q = {xo, ..., x,} ¥y P = Q \ {xs}. De este modo tenemos que:

I(f,Q) = Z fi - (xi — xi-1)

s—1 n
/(f, P) = Z fi - (Xi - Xi—1) + fs(Xs+1 - Xs—l) + Z fi - (Xi - Xi—l)
i=1 i=s+1



como Py Q son particiones asociadas a f, entonces f es constante en el intervalo (xs_1, Xs11), asi fs = fs1.
Por lo tanto

fs(Xs-i-l - Xs—l) - fs(Xs—i-l — Xs + Xs — Xs—l) - s+1(Xs+1 - Xs) + fs(Xs - Xs—l)
de donde se obtiene la igualdad.
Etapa 2) Consideremos un segundo caso particular, en que P C @ cualquiera. Claramente, se puede pasar

de la particion P a la particién @ por medio de particiones intermediarias construidas agregando un punto
cadavez: P= Py C P; C --- P, = Q. Usando el resultado anterior, se tiene que

I(f,P)=I(f,P)="---=I(f, P) = I(f, Q).
con lo cual la propiedad queda demostrada para el caso P C Q.

Etapa 3) En el caso general, basta tomar R = P U @, que constituye una particién mas fina que Py @
simultaneamente. Asi, con lo demostrado anteriormente se tiene que

I(f,P)=I(f,R) y I(f, Q) = I(f,R).

De aqui se obtiene la igualdad buscada en el caso general.

y
fo fr
o—e—0 o HFP) = -G —x0) + Bl — x)
f5 * 3 fg :fl'&;_xl)
o : | : : : ‘|‘f3 : (X3 - X2) + f4(X4 - X3)/

e o—tetto | I -

. SRR } +fs - (x5 — xa)
o—e—o | I i b 7)1 Rl %)
: : 3 3 ‘ : : : : =fe-(x7—xs5)
‘ | : : | | | ! | _|_f8 . (XS — X7)
X0 X1 X2 X3 Xa Xg Xe X7 Xg X

Figura 6: La integral de una funcién escalonada, no depende de la particién usada en su calculo.

s A

Definicién 6. Para cada funcion f : [a, b] — R escalonada, se define su integral de Riemann como

b n
/ fzzf;"(xi_xi—l)y
& i=1

donde P = {xq, ..., x,} designa cualquier particion asociada a f y f; denota al valor constante de f en el
correspondiente intervalo abierto (x;_1, X;).

\. J

b
OBS: También se suele usar la notacién de Leibniz / f(x)dx

OBS: La integral de una funcién escalonada solo depende de los valores de f en los interiores de los intervalos
de la particién y no de los valores de f en los bordes.



7.4 Propiedades de la integral de funciones escalonadas.

La integral de funciones escalonadas satisface las propiedades enunciadas en los siguientes 4 teoremas:

Teorema 7. (Linealidad) Si f, g son dos funciones escalonadas en el mismo intervalo [a, b]. Entonces,
para todo «, 3 € R la funcion af + Bg es una funcién escalonada en [a, b] y se tiene

/ab(af+ﬂg)=a/abf+ﬁ/abg

Demostracion. Sean f, g funciones escalonadas y sean P y Q particiones asociadas a f y g respectivamente
(no necesariamente las mismas). Claramente la particién R = P U Q, que es un refinamiento comiin de P
y Q estd asociada a f y g simultdneamente. (en efecto, pensemos en f: cada intervalo abierto definido por
la particién R esta incluido en un intervalo abierto definido por P, donde f es constante. Andlogo para g).
Luego, si escribimos R = {xo, ..., X,}, resulta que

/bfzznjmx,- y /bgzznjg,-Ax,-
a i=1 a i=1

donde f; y g; denotan los valores constantes de f y g en cada intervalo abierto (x;_1, x;).

Sean «, § € R. Claramente la funcién h = af + [Bg satisface:
h(x) = of; + Bgi = h;, Vx € (xi—1, X;)

por lo tanto es una funcién escalonada y su integral vale

/h—ZhAx,—Zaf+ﬁg, )Ax; = Zafo,—{—ZBg,Ax,—a/ f+ﬁ/

Teorema 8. (Aditividad horizontal) Si f es una funcién escalonada en el intervalo [a, b] (donde a < b)
y si ¢ € (a, b) es arbitrario. Entonces, f es una funcion escalonada en ambos intervalos [a, c| y [c, b] y

se tiene que
b c b
[i=[e [

Demostracion. Sea f una funcién escalonada en [a, b], sea P una particién asociada a f y sea ¢ € (a, b).
Claramente la particiéon R = P U {c}, es un refinamiento de P y por lo tanto, también estd asociada a f (en
efecto, cada intervalo abierto definido por la particion R esta incluido en un intervalo abierto definido por P,
donde f es constante). Para fijar ideas, digamos que R = {xp, ..., x,}, donde xo = a, xn, = ¢y x, = b,
donde 0 < m < ny que f(x) = f; en cada intervalo abierto (x;_1, x;), con i € {1,...,n}.




Claramente

/bf = i f;'AX,'.
a i=1

Ahora, definiendo P = RN [a,c] = {x0,.... xm} Yy P> = RN [c.b] = {Xm, ..., Xn}, se han formado dos
particiones, la primera del intervalo [a, c] y la otra del intervalo [c, b]. Como f es constante en cada intervalo
abierto definido por P; (que son algunos de los intervalos abiertos definidos por R), f resulta ser escalonada

en [a, c] y su integral vale
c m
/ f=>Y fAx.
g i=1

Andlogamente, f es escalonada en [c.b] y su integral vale

/bf: Z f.Ax;.

Sumando ambas integrales se obtiene que

/Cf—i-/bf_if;AX,—F i f}AXi_if}AX,‘_/bf.
a ¢ i=1 i=1 a

i=m+1

Teorema 9. (Monotonia) La integral de una funcién escalonada positiva en el intervalo [a, b] es positiva.
En consecuencia, si f, g son funciones escalonadas en el intervalo [a, b] tales que f(x) < g(x) para todo

x € [a, b], se tiene que
b b
[refs
a a

Demostracion propuesta al lector.
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7.5 Funciones Riemann integrables

En esta seccién, veremos como se puede definir la Integral de Riemann para una clase muy amplia de funciones.
En realidad, con esta teoria se puede integrar practicamente cualquier funcién encontrada en ingenieria.

Inicialmente, no pondremos condiciones sobre la funcién f que trataremos. Puede ser continua o no. Sélo
impondremos que se trate de una funcién bien definida en un intervalo cerrado y acotado [a, b], con a < by que
sea acotada en dicho intervalo (es decir, que existan m = inf{f(x) : x € [a, b]} y M = sup{f(x) : x € [a, b]}).

Con estas (nicas condiciones, que son bastante generales, se puede demostrar el siguiente teorema:

s N

Teorema 10. Si f es una funcién definida y acotada en [a, b| arbitraria, entonces se cumple que:

1. Los siguientes conjuntos son no vacios:

e £ (f) es el conjunto de todas las funciones escalonadas que minoran a f, es decir, aquellas
funciones escalonadas e tales que Vx € [a, b], e(x) < f(x).

e £.(f) es el conjunto de todas las funciones escalonadas que mayoran a f, es decir, aquellas
funciones escalonadas e tales que Vx € [a, b], f(x) < e(x).

2. Siempre existen las cantidades

l_(f):sup{/abe :668_}, l+(f):inf{/abe :e€8+},

llamadas integral inferior e integral superior de f en [a, b] respectivamente.

3. Estas integrales verifican la desigualdad

1_(f) < 1.(f).

Demostracion. 1) Primero notamos que al ser f acotada en [a, b], existen

m= inf f(x), M = sup f(x)

x€[a,b] x€l[a,b]

de modo que las funciones escalonadas f_(x) = my f,(x) = M son elementos de £_ y £, respectivamente.
Asi, esos conjuntos no son vacios.

2) Por otro lado, si F € £E_y G € £, se cumple que

F(x) < G(x), Vx € [a, b].

b b
VFEE_,(VGG&, /Fg/ G)

El paréntesis de la expresion anterior indica que el conjunto {fabe ce € 5+} es acotado inferiormente por

por lo tanto

11



b . - .
el real fa F . En consecuencia su infimo existe y cumple:

VFes,/nginf{/be :eea;}.

Esta dltima desigualdad indica que el conjunto {fabe ce € 5,} es acotado superiormente y su supremo

satisface la relacién )

sup{/be :e€€_}<inf{/ e :e€€+}.

Esto prueba que las cantidades /_(f) (Integral inferior) y I, (f) (Integral superior) de f siempre existen.
Ademas se cumple la relacién

I_(f) < 1.(f), Vf definida y acotada en [a, b].

La duda que queda en el teorema anterior, es si la dltima desigualdad es o no estricta. Pues bien, con
las hipdtesis generales que hemos puesto, resulta que algunas funciones satisfacen la igualdad y otras la
desigualdad estricta. En el dltimo caso, habrian 2 integrales para la misma funcién, lo cual no es dtil. Por
esa razon, dichas funciones se descartan de la teoria y se dice que no son Riemann integrables.

Cuando se cumple la igualdad, el calculo resultante es muy dtil y por eso se hace la siguiente definicién:

Definicién 11. Con las notaciones del teorema anterior, se dice que una funcion f definida y acotada
en el intervalo cerrado |a, b] es Riemann integrable en [a, b] si se cumple la

Dicho nimero comtin se llama la integral de f en el intervalo [a, b] y se le denota por

b b
/ f o bien / f(x)dx (Notacion de Leibniz).

Después de entender la definicidn previa, surge la pregunta: jCuales son las funciones Riemann integrables?
o ;Como saber si una funcién dada es o no Riemann integrable? Para responder a esta dltima pregunta, es
atil demostrar el siguiente teorema, que caracteriza totalmente a las funciones Riemann integrables.

Ejemplo 12 (Una funcién NO Riemann integrable). Consideremos la funcién

1 sixe@Q

f p—
V=10 sixer

esta funcién no es Riemann integrable en [a, b| ya que: Si e_ es una funcion escalonada tal que e_(x) <
f(x), Vx € [a, b], entonces en cada intervalo abierto (x;_1,x;) se tendrd que e_; < 0, de modo que

/ab e_(x) <0.

12



Andlogamente, si e, (x) es una funcion escalonada mayorante, es decir que cumple e, (x) >< f(x), Vx €

b
[a, b], entonces, en cada intervalo donde e, es constante se tendrd que e,; > 1y por lo tanto / e, = (b—a).
a

b
Con esto, / (ey —e_) = (b—a), con lo cual no es posible cumplir la condicion de Riemann.

Teorema 13 (Condicién de Riemann). Una funcién f definida y acotada en el intervalo cerrado [a, b]
es Riemann integrable en |a, b] si y solamente si

b b
“Ve>0existenf €& yf,. €&, tales que / fi —/ .<el

Demostracion. Primero veamos que la condicién de Riemann es suficiente:

Sea £ > 0 arbitrario. Sabemos que existen funciones escalonadas _ (x) € £_ y f,(x) € &, tales que

/ab@—/abf_gg. (@)

b b
/ F<I(F) <1 (f) < / f.

Pero,

Es decir, usando (4) se obtiene que
Ve >0, |I(f)—I_(f)|<e
de donde se obtiene que /_(f) = I.(f) y asi f resulta ser Riemann integrable.

Reciprocamente, si f es Riemann integrable en [a, b], sabemos que I_(f) = I, (f). Pero, (por definicién de
infimo y supremo) para todo € > 0 existen funciones escalonadas f_(x) € £_ y f.(x) € &, tales que

g b b g
l(f)—ig/ f, /f+<l+(f)+§.

b b
/f+—/ f_gf‘:.

con lo cual la funcidn satisface la condicién de Riemann.

de aqui, restando se tiene que
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SEMANA 8

Funciones Riemann Integrables

En esta seccidén veremos como la condicidon de Riemann permite demostrar que tanto las funciones mondtonas
en [a, b] (no necesariamente continuas) y las funciones continuas en [a, b], son ambas clases de funciones
Riemann integrables. Esta propiedad la estudiaremos en detalle en los préximos 2 teoremas:

Teorema 14. Toda funcién mondtona en [a, b] es Riemann integrable en [a, b].

Demostracion. Para fijar ideas, supongamos que f es creciente en [a, b]. Tomemos una particién P =
{Xo, ..., Xn} cualquiera del intervalo [a, b] y construyamos las siguientes funciones escalonadas definidas en
los intervalos (x;_1, ;) por:

f-(x) = f(x-1)sixe€(xi-1,x)
fo(x) = f(x) sixe(x.1,x)

e iguales a f(x;) en cada punto de la particién.

y
— y=1(x)
— y=f(x)
— y=f(x)

X =a X1 Xo X3 Xp_1 X, =b

Claramente, para todo x € [a, b] se tiene f_(x) < f(x) < fi(x).

Ademas:

n

/ab L= i f(xi_1)Ax;, /ab fo = Z f(x)Ax;.

i=1
de modo que
b n
[ (=)= 3 (70— fl-1)) A < [PICFE) - £(2)
a i=1
Para que esta diferencia sea menor que € > 0 arbitrario, basta tomar cualquier particiéon P de modo que su

norma sea lo suficientemente pequefia. (|P| < W)

14



Teorema 15. Toda funcién continua en [a, b] es Riemann integrable en [a, b].

Demostracion. Tomemos una particion P = {xg, ..., x,} cualquiera del intervalo [a, b] y construyamos las
siguientes funciones escalonadas definidas en los intervalos (x;_1, x;) por:

f(x) = [min ]f(x) si x € (x-1, %)
XE[Xi—1,Xi

fi(x) = {nax ]f(x) si x € (Xi-1, %)
XE|Xj—1,X]

e iguales a f(x;) en cada punto de la particién.
Claramente, para todo x € [a, b] se tiene f_(x) < f(x) < f.(x).

Ademas: , . i .
f= min _f(x)Ax;, / fr =) max Ax.
a i=1 i a : i
de modo que

A:/ab(a—f_):_n ( max f(x)— min f(x))Ax,-

X€E[xi—1,xi] X€[xi—1,xi]

Como f es continua en [a, b], en cada intervalo [x;_1, x;], f alcanza su minimo y su maximo. Digamos que

min  f(x)=f(s;) 'y max f(x) = f(t;)

x€[xi—1,x] X€[xi—1,xi]
donde s;, t; € [xi_1, xi].

Ahora recordamos que las funciones continuas en un compacto [a, b] son uniformemente continuas en [a, b,
por lo tanto, para cada ¢ > 0 arbitrario, existe un & > 0 tal que para cualquier par de puntos s, t € [a, b]

tales que |s — t| < § se cumple que:
€

b—a

f(s) — F(t) <

La demostracién concluye tomando cualquier particion P de modo que su norma sea menor o igual a ¢, asi
aseguramos que |s; — t;| < 0 y con esto resulta que:

Agi(bia)Ax,-zs.

Observacién 16. En la demostracion de ambos teoremas, se han usado las funciones escalonadas definidas
en los intervalos (x;_1, x;) por:

f(x) = m(f)= inf f(x)sixe(x-1,x)

x€[xi—1,x]

L) = M()= sup F(x)six € (x-1,%)

X€[xi—1,x]
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e iguales a f(x;) en cada punto de la particion.

Con ellas se tiene que

que suelen llamarse suma inferior y suma superior de f asociadas a P, y se denotan respectivamente por
s(f,P) y S(f, P).

Pues bien, en ambos casos ( funciones mondtonas y/o continuas) existe 6 > 0 de modo que si |P| < § se
obtiene S(f, P) — s(f, P) <

Estas sumas son interesantes, pero no tan faciles de calcular, debido a las definiciones de m; y M;. Por este
motivo muchas veces se suele usar la suma obtenida por la integracion de una funcién escalonada intermediaria,
la cual se define en cada intervalo (x;_1, x;) por:

f.(x) = f(s;) six € (xi_1, %)

donde los reales s; son arbitrarios del intervalo [x;_1, x;]. Claramente en este caso:

s(f, P) < /bf* = z”: f(si)Ax; < S(f, P)

La sumatoria intermedia se conoce como suma de Riemann.

Como la integral de f también satisface la desigualdad

S(F.P) < /bf < S(.P)

se concluye que:

Ve > 0,30 > 0,VP particion de [a, b], |P| < 6 = <e

n b
D f(s)Ax; — / f
i=1 a

Esta propiedad es una de las motivaciones de la notacion de Leibniz, entendiendo que la integral es el limite

de una sumatoria, es decir:
f(x )dx = lim E f(si)Ax;.
a |P|~>0

En este limite la variable que tiende a cero es la norma de la particion P (|P| — 0) y se calcula sobre las sumas
de Riemann. Esto explica el uso del signo integral (especie de S alargada, como limite del signo sumatoria)
y de la notacion de Leibnitz, donde el f(x)dx representa al sumando f(s;)Ax;.
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8.1 Propiedades de la Integral

Con las dos clases de funciones encontradas en la seccién previa, tenemos muchas funciones a las que se le
puede definir su integral. Sin embargo, esta clase puede crecer aun mas si se combinan funciones y se aplican
las propiedades que demostraremos en los siguientes 4 teoremas:

Teorema 17. (Linealidad) Si f, g son dos funciones Riemann integrables en el mismo intervalo [a, b].
Entonces, para todo «, 3 € R la funcién af + (g es una funcién Riemann integrable en [a, b] y se tiene

/ab(af+ﬂg)=a/abf+/3/abg

Demostracion. (Caso de la suma de funciones integrables)
Si f, g son Riemann integrables en [a, b], entonces para cada € > 0 existen funciones escalonadas f_(x), f.(x), g_(x)

y g.(x) tales que

) <fx)<flx), g (x)<glx) <gilx),  Yxelab] (5)
y
/ fy — / 5 / 8+ — / g- < Sy (6)
Sumando en (5) se obtiene que
f(x)+8-(x) < f(x) +g(x) < fi(x) +g:(x),  Vx€Ja b (7)

y usando (6) resulta que

[trver- [ +gi<e 0

de donde se deduce que f + g es Riemann integrable en [a, b].

Ademas de (6) se pueden escribir las siguientes desigualdades (tiles en lo que sigue):

[resefrefrefeef s
feieffofoe fosfos

/f+/g /[f+g] /f++/g+

que combinada con (9) y (10) se transforma en

/f+/ _e< /[f+g] /f+/g+s

I\)I(")

De (7) se tiene que



Esta dltima expresidn dice que para todo € > 0 se cumple

[leva-(fre [ o)<
/ab[f+g]:/abf+/abg

(Caso de la ponderacién de funciones integrables)
Sea f una funcién Riemann integrable y sea a > 0. (Si @ = 0 claramente af es integrable y su integral es
0).

de donde se deduce la igualdad

Para todo ¢ > 0 existen funciones escalonadas f_(x) y f.(x) tales que:

F(x)<F(x) < Fi(x),  Vxe€[ab] (11)

b b e
[ <t (12)
a a aQ

Multiplicando (11) por « > 0 se obtiene que
af (x) < af(x) < af,(x), Vx € [a, b (13)
y usando (12) resulta que
/b[af+] - /b[af_]dx < (14)
de donde se deduce que af es Riemann ir?tegrable ena[a, b].

Ademas de (12) se puede escribir la siguiente desigualdad (dtiles en lo que sigue):

b b b b b c
/f— g/f_g/fg/@g/m— (15)
a a a a a a
b b b
a/ f_g/afga/ f,

que combinada con (15) se transforma en

b b b
a/ f—sg/afga/ f+e

Esta ultima expresidn dice que para todo £ > 0 se cumple
b b
/ af—(a/ f)‘ge
a a
b b
/ af = a/ f

18
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De (13) se tiene que

de donde se deduce la igualdad



Para terminar con el caso o < 0, basta con probar que si f es Riemann integrable en [a, b], entonces —f es
Riemann integrable en [a, b]. En efecto, para cada € > 0 existen funciones escalonadas f_ y f, tales que:

f(x) < f(x) < fi(x), Vx € [a, b]
/bﬁ—/bfge.

— fi(x) < —f(x) < —f_(x), Vx € [a, b]

/ 1~ / Trl<e

de donde se deduce que —f es Riemann integrable en [a, b].

Multiplicando (16) por —1 se obtiene que

y usando (17) resulta que

Ademas de (17) se puede escribir la siguiente desigualdad (Utiles en lo que sigue):

b b b b b
/f—ag/f_g/fg/f+</f+g
b b b
_/;;xg/(_f)g_/f

que combinada con (20) se transforma en

b b b
—/ f—sg/—fg—/ f+e

Esta ultima expresidn dice que para todo £ > 0 se cumple

feo-( L]

De (18) se tiene que

de donde se deduce la igualdad

(16)

(17)

(18)

(19)

integrable en ambos intervalos |a, c| y [c, b].

En tal caso se tiene que
b c b
[o= [ [

Teorema 18. (Aditividad horizontal) Si f es una funcion definida y acotada en [a, b] entonces f es
Riemann integrable en [a, b] si y solamente si, para cada c € (a, b) arbitrario se tiene que f es Riemann

~
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Demostracion propuesta al lector.

Teorema 19. (Monotonia) La integral de una funcién Riemann integrable positiva en el intervalo [a, b]
es positiva; en consecuencia, si f, g son funciones Riemann integrables en |[a, b] tales que f(x) < g(x)

para todo x € [a, b], se tiene que
b b
[ref
a a

\ J

Demostracion propuesta al lector.

Teorema 20. (Desigualdad triangular) Si f es una funcién Rieman integrable en [a, b], entonces |f| es
Riemann integrable en [a, b] y se tiene que
b b
[ f< [ 1

En consecuencia, si |f(x)| < M para todo x € [a, b], se cumple

/abf‘gl\/l(b—a).

Demostracion. Sea f una funcién R-I en [a, b]. Para cada € > 0 existen funciones escalonadas f_(x) y fi(x)

tales que:
f(x) < f(x) < fi(x), Vx € [a, b] (21)

b b
/f+—/ f<e. (22)

Como es habitual, se descompone la funcién f en la diferencia de dos funciones positivas, del modo siguiente:
f(x) sif(x)>=0 0 si f(x)>=0
Py =110 STIZ0 g = e
0 si f(x) <0 —f(x) sif(x)<0

Asi se tiene que f = P— Ny |f| = P+ N. La demostracién se concluye probando que P es R-l en [a, b], ya
que por algebra se deduce que N también lo es y en consecuencia |f|.

Claramente de (21) se deduce que en cada punto donde f(x) > 0 se tiene que
f (x) < P(x) < fi.(x).
En los puntos donde f(x) < 0, resulta que P(x) = 0, por lo tanto queda
0<P(x)L0
. De este modo construimos las funciones escalonadas siguientes:

) fi(x) sifi(x) =0
Prlx) = {0 si f.(x) <0
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que claramente satisfacen:

[e-ry< [e-r<e

Luego, P es Riemann integrable en [a, b] y en consecuencia Ny |f|.

8.2 Integralde aa bcon a>b

r

\.

Definicién 21. Sea f una funcion integrable en un intervalo [p, q]. Si a, b € [p, q] son tales que a > b
entonces se define la integral de a a b del modo siguiente:

b a

/f = —/f sia>b, o
a b

b

/f = 0 sia=b.

~

con esta definicidn, las propiedades de la integral se pueden enunciar asi:

r

Proposicion 22. Sean f y g integrales en [p, q| y a, b € [p, q] entonces:
1)/ a=a(b—a), VaeR

2)/f—/f+/f Ve e [p, q]
3)/047‘204/ , YaeR
4)/a(f+g):/af+/abg

5)0 f(x )< g(x), Vx € [p.q] =
12 1f]

17 f] <

I

Demostracion. La demostraciones son sencillas y se dejan propuestas como ejercicios.
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