Álgebra Lineal Primavera 2025 - Control 2 Octubre 25, 2025

P1. Sea $\mathcal{C} = \{e_1, e_2, e_3\}$ la base canónica de \mathbb{R}^3 , donde $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ y $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que $f(e_1) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, f(e_2) = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ y $f(e_3) = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$.

- (a) (1.0 pto.) Pruebe que $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 2z \\ 2x + y + 4z \\ x + 2z \end{pmatrix}$.
- (b) (2.0 ptos.) Determine una base del núcleo de f, es decir, de Ker(f), e indique si la función es inyectiva.
- (c) (2.0 ptos.) Determine una base de Im(f) e indique si la función es epiyectiva.
- (d) (1.0 pto.) ¿Es f un isomorfismo?, es decir, ¿es f una función lineal biyectiva? Justifique.
- **P2.** (a) (3.0 ptos.) Sean $\mathcal{B} = \{v_1, v_2, v_3\}$ y $\mathcal{B}' = \{v_1 v_2, v_2 + v_3, v_1 v_3\}$ bases de un espacio vectorial V. Sea $T: V \to V$ una función lineal cuya matriz representante con respecto a la base \mathcal{B} en la partida (dominio) y la base \mathcal{B}' en la llegada (codominio), es

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Calcule la matriz P de pasaje de la base \mathcal{B}' a la base \mathcal{B} , esto es, la matriz representante de I_V donde la base en la partida es \mathcal{B}' y la base en la llegada es \mathcal{B} . Use la matriz P junto a la matriz M para demostrar que la matriz representante de T con respecto a la base \mathcal{B} tanto en la partida (dominio) como en la llegada (codominio), es

$$N = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix}.$$

(b) (3.0 ptos.) Considere la transformación $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}^3$ dada por $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a+b \\ c \\ c+d \end{pmatrix}$.

Calcule la matriz representante de T con respecto a las bases A en la partida y \mathscr{B} en la llegada, donde

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}, \quad \mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

- **P3.** Sea V un espacio vectorial real de dimensión $n \ge 1$ y consideremos $T: V \to \mathbb{R}$ una transformación lineal tal que $\operatorname{Ker}(T) \ne V$, es decir es un subespacio vectorial propio.
 - (a) (3.0 ptos.) Pruebe que T es epiyectiva y que $\dim(\operatorname{Ker}(T)) = n 1$.
 - (b) (3.0 ptos.) Pruebe que existe $v_0 \in V$ tal que $T(v_0) \neq 0$ y defina $U = \langle \{v_0\} \rangle$, el subespacio vectorial generado por v_0 . Pruebe que

$$Ker(T) \cap U = \{0\},\$$

y concluya que $V = U \oplus \text{Ker}(T)$.

Tiempo del control 3 horas.