Pauta Control recuperativo

P1. Sea $f: \mathbb{N} \to \mathbb{N}$ una función y definimos la relación \mathcal{R} en el conjunto \mathbb{N} como

$$n\mathcal{R}m \iff f(n) \le f(m),$$

donde $n, m \in \mathbb{N}$. Demuestre que

a) (3 puntos) Si f es inyectiva, entonces \mathcal{R} es una relación de orden.

Solución

Sea f una función inyectiva. Mostremos que

- \mathcal{R} es una simétrica: Como $f(n) \leq f(n)$ se tiene que $n\mathcal{R}n$ [0.5 puntos].
- \mathcal{R} es antisimétrica: Sea $n, m \in \mathbb{N}$ tal que $n\mathcal{R}m$ y $m\mathcal{R}n$. Tenemos que $f(n) \leq f(m)$ y $f(m) \leq f(n)$, por lo tanto f(n) = f(m) [1 pto]. Como f es inyectiva concluimos que n = m [0.5 puntos].
- \mathcal{R} es transitiva: Sea $n, m, l \in \mathbb{N}$ tal que $n\mathcal{R}m$ y $m\mathcal{R}l$. Se tiene que $f(n) \leq f(m)$ y $f(m) \leq f(l)$, por lo tanto $f(n) \leq f(l)$ [0.5 puntos] con lo que concluimos que $n\mathcal{R}l$ [0.5 puntos].
- b) (3 puntos) Probar por inducción que si para todo $n \in \mathbb{N}$, $n \mathcal{R}$ (n+1) entonces para todo $n \in \mathbb{N}$, $f(0) \leq f(n)$.

Solución

Caso base: Demostremos el resultado para n=0 [0.5 puntos]. Esto es claro pues $f(0) \le f(0)$ [0.5 puntos].

Paso inductivo: Sea $n \in \mathbb{N}$ y supongamos por hipótesis inductiva que $f(0) \le f(n)$ [0.5 puntos]. Como $n\mathcal{R}(n+1)$ se tiene que $f(n) \le f(n+1)$ [1 punto], por transitividad del menor o igual concluimos que $f(0) \le f(n+1)$ [0.5 puntos].

P2. Considere el conjunto $Fin(\mathbb{N})$, cuyos elementos son los subconjuntos finitos de \mathbb{N} , es decir,

$$Fin(\mathbb{N}) = \{ A \subset \mathbb{N} : A \text{ es finito} \}.$$

Sea la función $g: \operatorname{Fin}(\mathbb{N}) \to \mathbb{N}$ definida mediante

$$g(A) = \begin{cases} 0 & \text{si } A = \emptyset, \\ \sum_{k \in A} k & \text{si } A \neq \emptyset. \end{cases}$$

Es decir (para A no vacío), g(A) es la suma de los elementos del conjunto A.

a) (2 puntos) Evalúe la función g en $\{0,7,9\}$ y en $\{0,1,2,...,500\}$, es decir calcule $g(\{0,7,9\})$ y $g(\{0,1,2,...,500\})$. Luego calcule la imagen del conjunto $\{\{1\},\{1,3,5\}\}$ para la función g, es decir $g(\{\{1\},\{1,3,5\}\})$.

Obs: $\{0, 1, 2, ..., 500\}$ son todos los naturales desde 0 hasta 500 inclusive ambos.

Solución

Directamente
$$g(\{0,7,9\}) = \sum_{k \in \{0,7,9\}} k = 0 + 7 + 9 = \boxed{16} \leftarrow \boxed{0,5 \text{ pts}}$$
, ahora tomando $A = \{0,1,2,...,500\}$ se tiene que $g(A) = \sum_{k \in A} k = \sum_{k=0}^{500} k = \frac{500 \cdot 501}{2} = \boxed{125250} \leftarrow \boxed{0,5 \text{ pts}}$. Ahora, por definición de conjunto imagen $g(\{\{1\},\{1,3,5\}\}) = \{g(\{1\}),g(\{1,3,5\})\} \leftarrow \boxed{0,2 \text{ pts}}$, calculando en cada caso tenemos $g(\{1\}) = \sum_{k \in \{1\}} k = \boxed{1} \text{ y } g(\{1,3,5\}) = \sum_{k \in \{1,3,5\}} k = 1 + 3 + 5 = \boxed{9}$, asignar $\boxed{0,2 \text{ pts}}$ por cada uno, luego $g(\{\{1\},\{1,3,5\}\}) = \{1,9\} \leftarrow \boxed{0,4 \text{ pts}}$. \checkmark

b) (2 puntos) Muestre que g es epiyectiva pero no inyectiva.

Solución

Para ver que g es epiyectiva sea $n \in \mathbb{N}$ y definamos $A = \{n\} \in \operatorname{Fin}(\mathbb{N})$ se tiene claramente que $g(A) = \sum_{k \in \{n\}} k = [n] \checkmark \leftarrow [1 \text{ pto}]$. Ahora g no es inyectiva, para ello consideremos (por ejemplo) $A = \{1,2\}$ y $B = \{3\}$ ambos $\in \operatorname{Fin}(\mathbb{N})$. Se tiene entonces que g(A) = g(B) = 3 con $A \neq B \checkmark \leftarrow [1 \text{ pto}]$, evidentemente hay otros ejemplos que cumplen el mismo propósito.

c) (2 puntos) Calcule la preimagen del conjunto $\{1,2\}$ por la función g, esto significa que debe determinar el conjunto $g^{-1}(\{1,2\}) \subseteq \operatorname{Fin}(\mathbb{N})$.

Solución

Para determinar lo pedido, se deben encontrar los $A \in \operatorname{Fin}(\mathbb{N})$ tales que g(A) = 1 o bien $g(A) = 2 \leftarrow [0,2 \text{ pts}]$. Notar que si A es tal que g(A) = 1 entonces cualquier $m \in A$ necesariamente satisface $m \leq 1 \leftarrow [0,2 \text{ pts}]$. Solamente $\{0\}, \{0,1\}$ y $\{1\}$ satisfacen esa condición, siendo $\{0,1\}$ y $\{1\}$ los únicos que además cumplen con $g(A) = 1 \leftarrow [0,6 \text{ pts}]$. Por otro lado por un razonamiento análogo, los $A \in \operatorname{Fin}(\mathbb{N})$ tales que g(A) = 2 resultan ser $A = \{0,2\}$ y $A = \{2\} \leftarrow [0,6 \text{ pts}]$, esto pues si $A \in \operatorname{Fin}(\mathbb{N})$ es tal que g(A) = 2 y $m \in A$ entonces $m \leq 2 \leftarrow [0,2 \text{ pts}]$.

Finalmente $g^{-1}(\{1,2\}) = \{\{0,1\},\{1\},\{0,2\},\{2\}\} \leftarrow [0,2]$ pts].