CONTROL 6 (PAUTA)

P1. a) (3 ptos.) Sea $z \in \mathbb{C}$ cualquiera. Demuestre que

$$z^3 + \overline{z}^3 = 0 \land |z| = 1 \iff z^6 = -1.$$

Solución

Notar que de ambos lados de la equivalencia que hay que probar se deduce que |z|=1 y por tanto que $z\neq 0$. En efecto, el lado izquierdo incluye explícitamente que |z|=1 y en el derecho, tomando módulo a ambos lados de $z^6=-1$ (y usando las propiedades del módulo), resulta que $|z|^6=1$, y como |z| es un real no negativo, esto implica que |z|=1. (1 pto.) Usaremos esos dos hechos en la demostracion siguiente de la equivalencia:

$$z^{3} + \overline{z}^{3} = 0 \land |z| = 1 \iff z^{6} + (z \cdot \overline{z})^{3} = 0 \land |z| = 1$$

$$(\text{multiplicando por } z^{3} \ (\neq 0), \ \textbf{0.5 ptos.})$$

$$\iff z^{6} + |z|^{6} = 0 \land |z| = 1$$

$$(\text{propiedad: } |z|^{2} = z \cdot \overline{z}, \ \textbf{0.5 ptos.})$$

$$\iff z^{6} + 1 = 0 \land |z| = 1 \qquad (|z| = 1, \ \textbf{0.5 ptos.})$$

$$\iff z^{6} = -1 \land |z| = 1$$

$$\iff z^{6} = -1.$$

$$(|z| = 1 \text{ es consecuencia de } z^{6} = -1, \ \textbf{0.5 ptos.})$$

b) (3 ptos.) Utilice el resultado de la parte a) para encontrar todos los números $z \in \mathbb{C}$ de módulo 1 que satisfacen la ecuación $z^3 + \overline{z}^3 = 0$. Haga además un bosquejo de estos números en el plano complejo.

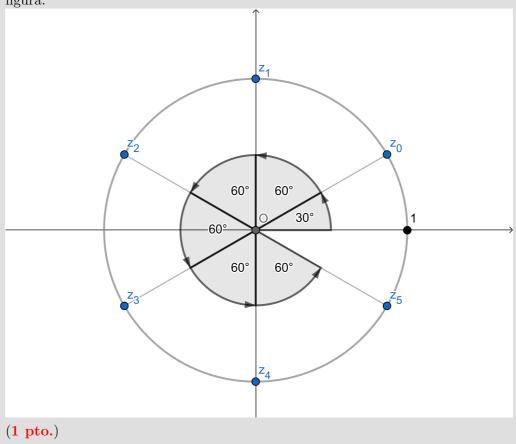
Solución

De la parte a) se sabe que las soluciones pedidas son exactamente las soluciones de la ecuación $z^6 = -1$, esto es, las raíces sextas del complejo -1.

Como $-1=1\cdot e^{i\pi}$ (0.5 ptos.), de lo que sabemos de raíces n-ésimas de un complejo, se tiene que si $z_0=1^{\frac{1}{6}}\cdot e^{i\frac{\pi}{6}}=e^{i\frac{\pi}{6}}$ y si $\rho=e^{i\cdot\frac{2\pi}{6}}$, entonces las seis raíces sextas de -1 son $z_k=z_0\cdot \rho^k=e^{i\left(\frac{\pi}{6}+k\cdot\frac{2\pi}{6}\right)},\ k=0,1,\ldots,5$. Así, las soluciones pedidas son:

$$z_0 = e^{i\frac{\pi}{6}}, z_1 = e^{i\frac{\pi}{2}}, z_2 = e^{i\frac{5\pi}{6}}, z_3 = e^{i\frac{7\pi}{6}}, z_4 = e^{i\frac{3\pi}{2}}, z_5 = e^{i\frac{11\pi}{6}}.$$
 (1.5 ptos.)

Gráficamente, estos son complejos de módulo 1, es decir, están en la circunferencia centrada en el origen y de radio 1, y se obtienen girando sucesivamente en $\frac{2\pi}{6}$ (esto es, 60°) a partir de la primera raíz $z_0=e^{i\frac{\pi}{6}}$, como se muestra en la figura:



P2. Sea X un conjunto infinito. Considere el anillo $(\mathcal{P}(X), +, \cdot)$, donde

$$A + B := A\Delta B = (A \cup B) \setminus (A \cap B)$$
 y $A \cdot B := A \cap B$.

Notar que \emptyset es el neutro para + y que $A\Delta A = \emptyset$, para cualquier $A \in \mathcal{P}(X)$.

a) (3 ptos.) Pruebe que (H, +) es subgrupo de $(\mathcal{P}(X), +)$, donde

$$H = \{ A \in \mathcal{P}(X) \mid A \text{ es finito} \}.$$

Solución

Notemos que, como $A\Delta A = \emptyset$, se tiene que -A = A, es decir, todo elemento es su propio inverso aditivo (1 pto.) Además, como \emptyset es finito, se tiene que $\emptyset \in H$ y por lo tanto H no es vacío (1 pto.) Así, usando la caracterización de subgrupo basta probar que para todo A, B en H, se tiene que $A + B = A\Delta B$ pertenece a H. Esto ocurre ya que, como la unión de dos conjuntos finitos es un conjunto finito, se tiene que la diferencia simétrica también. Concluimos que (H, +) es subgrupo de $(\mathcal{P}(X), +)$. (1 pto.)

b) (3 ptos.) Pruebe que todo elemento $A \in \mathcal{P}(X)$ tal que $A \neq \emptyset$ y $A \neq X$, es divisor de cero en el anillo $(\mathcal{P}(X), +, \cdot)$.

Solución

Sea $A \in \mathcal{P}(X)$ tal que $A \neq \emptyset$ y $A \neq X$. Se tiene que A es divisor de cero si y solo si existe $B \neq \emptyset$ tal que $A \cdot B = A \cap B = \emptyset$. Como $A \neq X$, su complemento no es vacío (1.5 ptos.) Luego, para $B = A^c$ se tiene que $A \cdot A^c = A \cap A^c = \emptyset$, lo que implica que A es divisor de cero en el anillo $(\mathcal{P}(X), +, \cdot)$ (1.5 ptos.)