

PAUTA DEL CONTROL 5

P1. (60 %)

Sea $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. Se define en $\mathbb{Z} \times \mathbb{N}^*$ la ley de composición interna por

$$\forall (a, b), (c, d) \in \mathbb{Z} \times \mathbb{N}^*, (a, b)\Delta(c, d) = (ad + cb, bd).$$

a) (1,5 ptos.) Demuestre que Δ es conmutativa.

Solución

Sean $(a, b), (c, d) \in \mathbb{Z} \times \mathbb{N}^*$. Se tiene

Por lo tanto, Δ es conmutativa. 0,7 ptos.

Comentarios para corrección

Si escribió $(a,b)\Delta(c,d)=(ad+cb,bd)$ y $(c,d)\Delta(a,b)=(ca+ad,db)$ por separado, asignar **0,6 ptos.** por cada igualdad y **0,3 ptos.** por usar la conmutatividad en $\mathbb Z$ y concluir.

b) (1,5 ptos.) Encuentre el neutro para Δ .

Solución

 $(e,f) \in \mathbb{Z} \times \mathbb{N}^*$ es neutro si y solo si, para todo $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ se tiene que $(a,b)\Delta(e,f)=(e,f)\Delta(a,b)=(a,b)$. Como Δ es conmutativa, basta considerar solo la igualdad $(a,b)\Delta(e,f)=(a,b)$. $\mathbf{0,5}$ ptos. Veamos,

$$\begin{split} (a,b)\Delta(e,f) &= (a,b) &\iff (af+eb,bf) = (a,b) \\ &\iff af+ef=a,\,bf=b......\textbf{0,5 ptos.} \\ &\iff e=0 \land f=1 \ \ (b\neq 0). \end{split}$$

Por lo tanto, el neutro es (0,1). 0,5 ptos.

Comentarios para corrección

Si hizo las dos igualdades sin usar conmutatividad se asignan los mismos 0,5 ptos.

c) (1,5 ptos.) Encuentre el conjunto de elementos invertibles para Δ con sus respectivos inversos.

Solución

 $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ tiene inverso $(c,d) \in \mathbb{Z} \times \mathbb{N}^*$ si y solo si $(a,b)\Delta(c,d) = (c,d)\Delta(a,b) = (0,1)$. Por la commutatividad de Δ , basta considerar solo la igualdad $(a,b)\Delta(c,d) = (0,1)$. 0,5 ptos. Veamos,

$$(a,b)\Delta(c,d) = (0,1) \iff (ad+cb,bd) = (0,1)$$

 $\iff ad+cb = 0 \land bd = 1$
 $\iff b = d = 1 \land c = -a.$

pues $b, d \in \mathbb{N}^*$. **0,5 ptos.** Por lo tanto, (a, b) es invertible si y solo si b = 1 y $a \in \mathbb{Z}$. Tales elementos tienen inverso (-a, 1). **0,5 ptos.**

Comentarios para corrección

Si hizo los inversos por ambos lados por separado sin usar conmutatividad se asignan los mismos 0.5 ptos.

d) (1,5 ptos.) Pruebe que la función $f: \mathbb{Z} \times \mathbb{N}^* \to \mathbb{Q}$ definida mediante $f(a,b) = \frac{a}{b}$ es un homomorfismo epiyectivo de $(\mathbb{Z} \times \mathbb{N}^*, \Delta)$ en $(\mathbb{Q}, +)$.

Solución

f es homomorfismo pues, para $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{N}^*$ se tiene que

$$f(a,b) + f(c,d) = \frac{a}{b} + \frac{c}{d}$$

$$= \frac{ad + bc}{bd} \dots 0,5 \text{ ptos.}$$

$$= f(ad + bc, bd)$$

$$= f((a,b)\Delta(c,d)) \dots 0,5 \text{ ptos.}$$

Finalmente, f es epiyectiva pues, dado un racional $\frac{a}{b}$, con $a, b \in \mathbb{Z}$, $b \neq 0$, se tiene que $\frac{a}{b} = f(a, b)$, con $(a, b) \in \mathbb{Z} \times \mathbb{N}^*$ si $b \in \mathbb{N}^*$ y $\frac{a}{b} = f(-a, -b)$, con $(-a, -b) \in \mathbb{Z} \times \mathbb{N}^*$ si $b \in \mathbb{Z}$ y b < 0. **0,5 ptos.**

Comentarios para corrección

Asignar 0,3 de los 0,5 puntos de la epiyectividad si no estudian el caso b < 0.

a) (3 ptos.) Sea a > 0 un número real positivo. Demuestre que el conjunto

$$\sqrt{a}\mathbb{N} = \{\sqrt{a} \cdot n \mid n \in \mathbb{N}\},\$$

es numerable.

Solución

El conjunto es numerable pues la función $f:\sqrt{a}\mathbb{N}\to\mathbb{N}$ dada por $f(\sqrt{a}\cdot n)=n$ es biyectiva. **1,5 ptos.** En efecto, la función $g:\mathbb{N}\to\sqrt{a}\mathbb{N}$ definida mediante $g(n)=\sqrt{a}\cdot n$ es la inversa **0,5 ptos.**: Para $n\in\mathbb{N},$ $(f\circ g)(n)=f(g(n))=f(\sqrt{a}\cdot n)=n$ **0,5 ptos.** y, para $\sqrt{a}\cdot n\in\sqrt{a}\mathbb{N},$ $(g\circ f)(\sqrt{a}\cdot n)=g(f(\sqrt{a}\cdot n))=g(n)=\sqrt{a}\cdot n.$ **0,5 ptos.**

Otra forma para probar la biyectividad de f. Por definición: para la inyectividad, sean $\sqrt{a} \cdot n$, $\sqrt{a} \cdot m \in \sqrt{a}\mathbb{N}$ tales que $f(\sqrt{a} \cdot n) = f(\sqrt{a} \cdot m)$. Entonces, n = m y por lo tanto, $\sqrt{a} \cdot n = \sqrt{a} \cdot m$. 0,8 ptos. Por otra parte, f es epiyectiva pues si $n \in \mathbb{N}$, entonces $n = f(\sqrt{a} \cdot n)$. 0,7 ptos.

b) (3 ptos.) Demuestre que el conjunto

$$A = \{x \cdot n \mid x \in \{\sqrt{2}, \sqrt{3}\}, n \in \mathbb{N} \setminus \{0\}\},\$$

es numerable.

Solución

Primera forma. Notemos que $A = \sqrt{2}\mathbb{N} \cup \sqrt{3}\mathbb{N}$ **1,5 ptos.** es unión de conjuntos numerables por la parte a) y, por lo tanto, es numerable. **1,5 ptos.** Segunda forma. Enumerar directamente, usando, por ejemplo, los pares positivos para los elementos de la forma $\sqrt{2} \cdot n$ y los impares para los de la forma $\sqrt{3} \cdot n$. Es decir, considerar la función $f : \mathbb{N} \setminus \{0\} \to A$ dada por

$$f(n) = \begin{cases} \sqrt{2} \frac{n}{2}, & \text{si } n \text{ es par,} \\ \sqrt{3} \frac{n+1}{2}, & \text{si } n \text{ es impar. } \mathbf{1,5 ptos.} \end{cases}$$

f es inyectiva pues, si $n,m \in \mathbb{N} \setminus \{0\}$ satisfacen f(n) = f(m), entonces n y m tienen igual paridad pues, de lo contrario se obtendría que, $\sqrt{2}/\sqrt{3}$ es racional. Ahora, si n y m tienen igual paridad, entonces f(n) = f(m) implica que $\sqrt{2}\frac{n}{2} = \sqrt{2}\frac{m}{2}$ o que $\sqrt{3}\frac{n+1}{2} = \sqrt{3}\frac{m+1}{2}$ y, en cualquier caso, se tiene que n = m. 1 pto. Por otra parte, f es epiyectiva pues si $x \cdot n \in A$, entonces $x \cdot n = f(2n)$ si $x = \sqrt{2}$ y $x \cdot n = f(2n-1)$ si $x = \sqrt{3}$. 0,5 ptos.

Comentarios para corrección

En la segunda forma se puede probar solo la epiyectividad 0,5 ptos. y argumentar que A es infinito y $|A| = |f(\mathbb{N} \setminus \{0\})| \le |\mathbb{N} \setminus \{0\}| = |\mathbb{N}|$ 1 pto.