

Control 3 Recuperativo

P1. a) (1.5 ptos.) Encuentre todos los $z \in \mathbb{C}$ tales que |z - i| = |z + i|.

Solución: Al ser números positivos, $|z - i| = |z + i| \iff |z - i|^2 = |z + i|^2$ (0.4 ptos.). Luego

$$|z - i|^2 = |z + i|^2 \iff (z - i)\overline{(z - i)} = (z + i)\overline{(z + i)}$$

$$\iff (z - i)(\overline{z} + i) = (z + i)(\overline{z} - i)$$

$$\iff z\overline{z} + (z - \overline{z})i - i^2 = z\overline{z} - (z - \overline{z})i - i^2$$

$$\iff 2(z - \overline{z})i = 0$$

$$\iff z - \overline{z} = 0 \quad \textbf{(0.8 ptos.)}$$

Como $z = \bar{z}$, concluímos que $z \in \mathbb{R}$. Es decir, los z que satisfacen la igualdad son todos los que solo tienen parte real. (0.3 ptos.)

b) El propósito de esta parte es demostrar que para todos $z, w \in \mathbb{C} \setminus \{0\}$ se tiene que:

$$|z+w|=|z|+|w|\iff \exists\,\alpha\in\mathbb{R},\,\alpha>0, \text{ tal que }w=\alpha z.$$

i) (1.0 ptos.) Pruebe que se tiene la implicancia hacia la izquierda (\Leftarrow).

Solución: Sean
$$w, z \in \mathbb{C}$$
 y $\alpha > 0$ tales que $w = \alpha z$. Luego
$$|z+w| = |z+\alpha z| = |(1+\alpha)z| = |1+\alpha||z| = (1+\alpha)|z| = |z|+\alpha|z| = |z|+|\alpha z| = |z|+|w|.$$
 donde se ha usado que $\alpha > 0 \implies 1+\alpha > 0$. (1.0 pto.)

ii) (1.0 ptos.) Pruebe que $|z+w|=|z|+|w| \implies \operatorname{Re}(z\bar{w})=|z||w|$.

Solución:
$$|z+w| = |z| + |w| \iff |z+w|^2 = (|z|+|w|)^2 \quad \textbf{(0.2 ptos.)}$$

$$\iff (z+w)(\overline{z+w}) = |z|^2 + 2|z||w| + |w|^2$$

$$\iff (z+w)(\overline{z}+\overline{w}) = |z|^2 + 2|z||w| + |w|^2$$

$$\iff z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w} = |z|^2 + 2|z||w| + |w|^2 \quad \textbf{(0.4 ptos.)}$$

$$\iff |z|^2 + z\overline{w} + \overline{z}\overline{w} + |w|^2 = |z|^2 + 2|z||w| + |w|^2$$

$$\iff \operatorname{Re}(z\overline{w}) = |z||w| \quad \textbf{(0.4 ptos.)}$$

iii) (1.5 pto.) Considere z = a + bi y w = c + di. Pruebe que:

$$\operatorname{Re}(z\bar{w}) = |z||w| \implies (ac > 0 \lor bd > 0) \land ad - bc = 0.$$

Solución: Notemos que $z\bar{w}=(a+bi)(c-di)=(ac+bd)-(ad-bc)i$ (0.2 ptos.). Luego, $ac+bd=\operatorname{Re}(z\bar{w})=|z||w|>0$ y por tanto ac>0 o bien bd>0 (o ambos). (0.3 ptos.) Por otro lado,

$$Re(z\bar{w}) = |z||w| \iff ac + bd = \sqrt{a^2 + b^2}\sqrt{c^2 + d^2}$$

$$\implies (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2)$$

$$\iff (ac)^2 + 2(ac)(bd) + (bd)^2 = (ac)^2 + (ad)^2 + (bc)^2 + (bd)^2$$

$$\iff (ad)^2 - 2(ad)(bc) + (bc)^2 = 0$$

$$\iff (ad - bc)^2 = 0$$

$$\iff ad - bc = 0. \quad \textbf{(1.0 pto.)}$$

iv) (1.0 pto.) Usando lo anterior, pruebe la implicancia hacia la derecha (\Longrightarrow) .

Solución: Sean z=a+bi y w=c+di tales que |z+w|=|z|+|w|. Por lo anterior, ac>0 o bd>0. Supongamos primero que ac>0. Notemos que en particular $a\neq 0$ y que a y c tienen el mismo signo (0.2 ptos.). Luego $ad-bc=0 \implies d=\frac{bc}{a}$ y por tanto $w=c+di=c+\frac{bc}{a}i=\frac{c}{a}(a+bi)=\frac{c}{a}z$ (0.2 ptos.). Por lo anterior, $\alpha=\frac{c}{a}>0$. (0.1 ptos.)

Procedemos de manera análoga cuando bd > 0. Observamos que $b \neq 0$, que $b \neq d$ tienen el mismo signo (0.2 ptos.) y además que $ad - bc = 0 \implies c = \frac{ad}{b} \implies w = c + di = \frac{ad}{b} + di = \frac{d}{b}(a+bi) = \frac{d}{b}z$ (0.2 ptos.). En este caso, tomamos $\alpha = \frac{b}{d} > 0$. (0.1 ptos.)

- **P2.** a) Sea $S = \mathbb{Q} \setminus \{-1\}$ y * una operación definida como $x * y = x + y + x \cdot y$, para todos $x, y \in S$.
 - i) (1.5 ptos.) Muestre que * es ley de composición interna en S.

Indicación: Puede resultar útil escribir x * y en términos de x + 1 e y + 1.

Solución:

Primera forma: Observemos que $x*y=x+y+x\cdot y=(x+1)(y+1)-1$ (1.0 pto.). Luego, $x\neq -1 \land y\neq -1 \implies (x+1)(y+1)\neq 0 \implies x*y\neq -1$. (0.5 ptos.)

Segunda forma: Notemos que $x \neq -1 \implies x * y = x + y + x \cdot y \neq -1 + y - y = -1$. (1.5 ptos.)

ii) (2.0 ptos.) Muestre que $f: \mathbb{Q} \setminus \{0\} \to S$ tal que f(x) = x - 1 es un isomorfismo de $(\mathbb{Q} \setminus \{0\}, \cdot)$ a (S, *).

Solución: Primero mostremos que f es homomorfismo, es decir, que para todos $x, y \in \mathbb{Q}$, $f(x \cdot y) = f(x) * f(y)$ (0.2 ptos.). Calculando tenemos:

$$f(x) * f(y) = (x - 1) * (y - 1)$$

$$= (x - 1) + (y - 1) + (x - 1)(y - 1) \quad \textbf{(0.5 ptos.)}$$

$$= x + y - 2 + xy - x - y + 1$$

$$= xy - 1$$

$$= f(x \cdot y) \quad \textbf{(0.5 ptos.)}$$

Es claro que f es inyectiva, ya que $x \neq y$, entonces $x - 1 \neq y - 1 \implies f(x) \neq f(y)$. (0.3 ptos.)

Por otra lado, es inmediato que f es epiyectiva, ya que para $s \in S$, basta tomar x = s + 1. Notemos que como $s \neq -1$, entonces $x \neq 0$ y por tanto $x \in \mathbb{Q} \setminus \{0\}$. Además, f(x) = f(s+1) = (s+1) - 1 = s. (0.5 ptos.)

iii) (0.5 ptos.) Concluya que (S, *) es un grupo abeliano.

Solución: Por el punto anterior, $(S,*)\cong (\mathbb{Q}\setminus\{0\},\cdot)$ y como este último es grupo abeliano, (S,*) también lo es. **(0.5 ptos.)**

b) (2.0 ptos.) Sea G un grupo. Pruebe que

$$G$$
 es abeliano $\iff \forall a, b \in G, (ab)^{-1} = a^{-1}b^{-1}.$

Indique las propiedades qué utiliza en cada paso.

Solución: Sean $a, b \in G$.

 (\Rightarrow) Tenemos lo siguiente:

$$(ab)(a^{-1}b^{-1}) = (ba)(a^{-1}b^{-1})$$
 G es abeliano
$$= b(a(a^{-1}b^{-1}))$$
 asociatividad
$$= b((aa^{-1})b^{-1})$$
 asociatividad
$$= b(eb^{-1})$$
 neutro
$$= bb^{-1}$$
 inverso
$$= e$$
 (0.8 ptos.)

Como el inverso de ab es único, concluímos que $(ab)^{-1} = a^{-1}b^{-1}$. (0.2 ptos.)

 (\Leftarrow) Por otro lado, tenemos:

$$(ba)(ab)^{-1} = (ba)(a^{-1}b^{-1})$$
 hipótesis
 $= b(a(a^{-1}b^{-1}))$ asociatividad
 $= b((aa^{-1})b^{-1})$ asociatividad
 $= b(eb^{-1})$ neutro
 $= bb^{-1}$ inverso
 $= e$ (0.8 ptos.)

Nuevamente, como el inverso de $(ab)^{-1}$ es único, concluímos que ba = ab. (0.2 ptos.)

- **P3.** Considere el anillo $(\mathbb{Z}_2 \times \mathbb{Z}_5, \oplus, \otimes)$, donde \oplus y \otimes corresponden a la suma y la multiplicación usual de un producto cartesiano.
 - a) (1.0 pto.) Encuentre dos elementos invertibles de $(\mathbb{Z}_2 \times \mathbb{Z}_5, \otimes)$.

Solución: Dos elementos invertibles son $([1]_2, [1]_5)$ y $([1]_2, [2]_5)$. Sus inversos son $([1]_2, [1]_5)^{-1} = ([1]_2, [1]_5)$ y $([1]_2, [2]_5)^{-1} = ([1]_2, [3]_5)$. (1.0 pto.)

b) (1.0 pto.) ¿Este anillo tiene divisores de cero? En caso afirmativo, encuentre dos divisores.

Solución: El anillo sí tiene divisores de cero (0.2 ptos.). Por ejemplo, ($[0]_2$, $[1]_5$) y ($[1]_2$, $[0]_5$) lo son. (0.8 ptos.)

- c) Sea $f: \mathbb{Z}_2 \times \mathbb{Z}_5 \to \mathbb{Z}_{10}$ un función definida como $f([a]_2, [b]_5)) = [5a + 2b]_{10}$, para todos $a, b \in \mathbb{Z}$.
 - i) (1.5 ptos.) Pruebe que f está bien definida, es decir, que si $[a]_2 = [c]_2$ y $[b]_5 = [d]_5$, entonces $f([a]_2, [b]_5)) = f([c]_2, [d]_5)$.

Solución: Sean $([a]_2, [b]_5)$ y $([c]_2, [d]_5)$ en $\mathbb{Z}_2 \times \mathbb{Z}_5$ tales que $[a]_2 = [c]_2$ y $[b]_5 = [d]_5$. Luego, existen $k, \ell \in \mathbb{Z}$ tales que a - c = 2k y $b - d = 5\ell$ (0.5 ptos.). Por tanto:

$$f([a]_2, [b]_5)) = [5a + 2b]_{10}$$

$$= [5(c + 2k) + 2(d + 5\ell)]_{10}$$

$$= [5c + 2d + 10(k + \ell)]_{10}$$

$$= [5c + 2d]_{10}$$

$$= f([c]_2, [d]_5))$$
 (1.0 pto.)

ii) (1.5 ptos.) Pruebe que f un homomorfismo de $(\mathbb{Z}_2 \times \mathbb{Z}_5, \oplus)$ a $(\mathbb{Z}_{10}, +_{10})$.

Solución: Sean $([a]_2, [b]_5)$ y $([c]_2, [d]_5)$ en $\mathbb{Z}_2 \times \mathbb{Z}_5$. Tenemos que demostrar que:

$$f(([a]_2, [b]_5) \oplus ([c]_2, [d]_5)) = f([a]_2, [b]_5)) +_{10} f([c]_2, [d]_5)).$$
 (0.5 ptos.)

Para ello, notemos que:

$$\begin{split} f(([a]_2,[b]_5) \oplus ([c]_2,[d]_5)) &= f([a]_2 +_2 [c]_2,[b]_5 +_5 [d]_5) \\ &= f([a+c]_2,[b+d]_5) \quad \textbf{(0.3 ptos.)} \\ &= [5(a+c) + 2(b+d)]_{10} \\ &= [(5a+10b) + (5c+2d)]_{10} \quad \textbf{(0.4 ptos.)} \\ &= [5a+2b]_{10} +_{10} [5c+2d]_{10} \\ &= f([a]_2,[b]_5)) +_{10} f([c]_2,[d]_5)) \quad \textbf{(0.3 ptos.)} \end{split}$$

iii) (1.0 pto.) Argumente por qué f no es homomorfismo de $(\mathbb{Z}_2 \times \mathbb{Z}_5, \otimes)$ a $(\mathbb{Z}_{10}, \cdot_{10})$.

Solución: Para mostrar que no es homomorfismo, basta encontrar $([a]_2, [b]_5)$ y $([c]_2, [d]_5)$ en $\mathbb{Z}_2 \times \mathbb{Z}_5$ tales que:

$$f(([a]_2, [b]_5) \otimes ([c]_2, [d]_5)) \neq f([a]_2, [b]_5)) \cdot_{10} f([c]_2, [d]_5)).$$
 (0.3 ptos.)

Para ello, tomemos $([a]_2, [b]_5) = ([c]_2, [d]_5) = ([0]_2, [1]_5)$. En efecto:

$$f(([0]_2,[1]_5)\otimes([0]_2,[1]_5))\neq f([0]_2,[1]_5)=[2]_{10}.$$
 (0.2 ptos.)

Por otro lado,

$$f([0]_2,[1]_5)) \cdot_{10} f([0]_2,[1]_5) = [2]_{10}[2] +_{10} [2]_{10} = [4]_{10}$$
 (0.3 ptos.)

Como $[2]_{10} \neq [4]_{10}$, f no es homomorfismo de $(\mathbb{Z}_2 \times \mathbb{Z}_5, \otimes)$ a $(\mathbb{Z}_{10}, \cdot_{10})$. (0.2 ptos.)

Duración: 3 horas.