

Control 3

- **P1.** a) Considere el anillo $(\mathbb{Z}_{15}, +, \cdot)$, donde la suma y la multiplicación son módulo 15.
 - i) (1.0 pto.) Encuentre un elemento invertible de (\mathbb{Z}_{15} , ·) que sea distinto a su neutro.

Solución: Como vimos en clases, el neutro de (\mathbb{Z}_{15}, \cdot) es $[1]_{15}$. Tomamos, por ejemplo, el elemento $[2]_{15}$, tenemos que $[2]_{15} \cdot [8]_{15} = [16]_{15} = [1]_{15}$ (0.5 ptos.). Entonces, como sabemos que (\mathbb{Z}_{15}, \cdot) es conmutativo (o calculando que $[8]_{15} \cdot [2]_{15} = [1]_{15}$), se tiene que $[2]_{15}$ es invertible (0.5 ptos.).

ii) (1.0 pto.) Encuentre tres elementos distintos x, y, z que son divisores de 0 en $(\mathbb{Z}_{15}, +, \cdot)$.

Solución: Por ejemplo, podemos tomar $x = [3]_{15}$, $y = [5]_{15}$, $z = [10]_{15}$. Tenemos $0 \notin \{x, y, z\}$ y $x \cdot y = [3 \cdot 5]_{15} = [0]_{15} = [3 \cdot 10]_{15} = x \cdot z$, por lo que los tres son divisores de cero. (1.0 pto.).

iii) (1.5 ptos.) Se sabe que $(\mathbb{Z}_n, +)$ es un grupo para todo $n \in \mathbb{N}^+$ (no lo pruebe). Encuentre un subgrupo de $(\mathbb{Z}_{15}, +)$ que tenga exactamente 5 elementos. Justifique por qué es un subgrupo.

Solución: El subgrupo buscado es $G := \{[0]_{15}, [3]_{15}, [6]_{15}, [9]_{15}, [12]_{15}\} = \{[3i]_{15} : i = 0, 1, 2, 3, 4\}$ (0.3 ptos).

Primera Alternativa: Consideramos $f: \mathbb{Z}_5 \to \mathbb{Z}_{15}$ dada por $f([i]_5) = [3i]_{15}$. La imagen de f es G, y entonces, por una proposición, es suficiente mostrar que f es un homomorfismo (**0.4 ptos**). Se verifica la propiedad del homomorfismo: Dados $[i]_5, [j]_5 \in \mathbb{Z}_5$ arbitrarios, tenemos $f([i]_5 + [j]_5) = f([i+j]_5) = [3(i+j)]_{15} = [3i+3j]_{15} = [3i]_{15} + [3j]_{15} = f([i]_5) + f([j]_5)$ (**0.4 ptos.** por saber la definición del homomorfismo y **0.4 ptos.** por verificar la propiedad).

Segunda Alternativa: Verificar que G forma un subgrupo usando la caracterización de subgrupos: Para todo $x, y \in G$ se tiene que $x - y = x + (-y) \in G$ (**0.4 ptos** por conocer la caracterización y traducirla correctamente al contexto aditivo de G). Tomamos $x = [3i]_{15}, y = [3j]_{15} \in G$ arbitrarios. Observamos que el inverso aditivo de y es $-y = [15 - 3j]_{15}$ (**0.3 ptos**). Calculamos $x - y = [3i]_{15} - [15 - 3j]_{15} = [3i - 15 + 3j]_{15} = [3(i + j - 5)]_{15} \in G$ (**0.5 ptos**).

Tercera Alternativa: Verificar las propiedades de un grupo para G. Cerradura (0.3 ptos), asociatividad (0.3 ptos), existencia del neutro (0.3 ptos) y existencia de inversos (0.3 ptos).

- b) Sea (G,*) un grupo donde cada elemento es su propio inverso.
 - i) (1 ptos.) Pruebe que G es abeliano.

Solución: Sean $a, b \in G$ arbitrarios. Tenemos $a = a^{-1}$ y $b = b^{-1}$ por hipótesis. Entonces $a * b = a^{-1} * b^{-1} = (b * a)^{-1}$ (0.5 ptos.). Como también $b * a = (b * a)^{-1}$ por hipótesis, se obtiene $a * b = (b * a)^{-1} = b * a$ (0.5 ptos.).

ii) (1.5 ptos.) Asuma ahora que $|G| \geq 3$. Pruebe que para todo $n \in \mathbb{N}$ se tiene que (G, *) no es isomorfo a $(\mathbb{Z}_n, +)$.

Solución: Por contradicción. Asumimos que existe un $n \in \mathbb{N}$ tal que los grupos (G, *) y $(\mathbb{Z}_n, +)$ son isomorfos **(0.1 pto.)**. Entonces existe un isomorfismo $f : \mathbb{Z}_n \to G$. En particular, como f es biyectiva, tenemos que $n = |\mathbb{Z}_n| = |G| \geq 3$ **(0.1 pto.)**. Por lo tanto, $[1]_n \neq [0]_n$ **(0.1 pto.)**, por lo que tiene inverso $[n-1]_n$ **(0.1 pto.)**, y este cumple con $[n-1]_n \neq [1]_n$ porque $n-1 \geq 2$ **(0.2 ptos.)**.

Como f es homomorfismo, tenemos que $f([n-1]_n)$ es inverso de $f([1]_n)$ (0.4 ptos.). Por unicidad de los inversos, y la propiedad de G (cada elemento es su propio inverso) sigue que $f([n-1]_n) = f([1]_n)$ (0.3 ptos.), lo que contradice la invectividad de la función f (0.2 ptos.).

- **P2.** a) Sea $\mathcal{F} = \{f : A \to A : f \text{ es biyectiva}\}$. Se sabe que que (\mathcal{F}, \circ) es un grupo, donde \circ es la composición de funciones. Para cada $a \in A$, un elemento fijo, definimos $\mathcal{F}_a = \{f \in \mathcal{F} : f(a) = a\}$.
 - i) (1.5 ptos.) Pruebe que, para todo $a \in A$, (\mathcal{F}_a, \circ) es subgrupo de (\mathcal{F}, \circ) .

Solución:

Primera Alternativa: Verificar que \mathcal{F}_a es subgrupo mediante la caracterización. Es decir, que $\mathcal{F}_a \neq \emptyset$ y que para todo $f, g \in \mathcal{F}_a$ se tiene que $g \circ f^{-1} \in \mathcal{F}_a$. (0.3 ptos.)

Primero, notamos que $id_A \in \mathcal{F}_a$, dado que $id_A(a) = a$, por lo que $\mathcal{F}_a \neq \emptyset$. (0.4 ptos.)

Por otro lado, sean $f, g \in \mathcal{F}_a$. Notemos que como f(a) = a, para $f^{-1} \in \mathcal{F}$, tenemos que $f^{-1}(a) = a$. (0.5 ptos.)

Luego, $g(f^{-1}(a)) = g(a) = a$, de donde se tiene que $g \circ f^{-1} \in \mathcal{F}_a$. (0.3 ptos.)

Segunda Alternativa: Verificar las propiedades de un grupo para G. Cerradura (0.3 ptos), asociatividad (0.3 ptos), existencia del neutro (0.3 ptos) y existencia de inversos (0.3 ptos).

ii) (1.5 ptos.) Sean $a, b \in A$, con $a \neq b$. ¿Son $\mathcal{F}_a \cap \mathcal{F}_b$ y $\mathcal{F}_a \cup \mathcal{F}_b$ subgrupos? En caso de que alguno no lo sea, muestre un contraejemplo tomando $A = \{1, 2, 3\}$.

Solución:

- Veamos primero que $\mathcal{F}_a \cap \mathcal{F}_b$ es subgrupo (0.2 ptos.). Para ello, notemos que si $f \in \mathcal{F}_a \cap \mathcal{F}_b$, entonces f(a) = a y f(b) = b. Luego, un argumento análogo al ítem anterior se puede aplicar (caracterización por subgrupos o verificar todas las propiedades).(0.4 ptos.)
- Por otro lado, $\mathcal{F}_a \cup \mathcal{F}_b$ no es subgrupo (0.2 ptos.). Para ello, tomemos $A = \{1, 2, 3\}$ y notemos que el conjunto $\mathcal{F}_1 \cup \mathcal{F}_2$ no es cerrado para la composición de funciones. (0.2 ptos.). En efecto, si $f \in \mathcal{F}_1$ es tal que f(1) = 1, f(2) = 3 y f(3) = 2 y $g \in \mathcal{F}_2$ es tal que g(1) = 3, g(2) = 2 y g(3) = 1, entonces $(g \circ f)(1) = 3$, $(g \circ f)(2) = 1$ y $(g \circ f)(3) = 2$, de donde $g \circ f \notin \mathcal{F}_1 \cup \mathcal{F}_2$. (0.5 ptos.)
- b) Sea $z = a + bi \in \mathbb{C}$.

i) (1.5 ptos.) Sea $\lambda \in \mathbb{R}$, $\lambda > 0$. Diga qué condiciones tienen que satisfacer los reales a y b para que $|z + \lambda| = |z| + \lambda$.

Solución:

Primero, notemos que $|z + \lambda|^2 = (a + \lambda)^2 + b^2 = a^2 + b^2 + \lambda^2 + 2\lambda a$. (0.2 ptos.). Por otro lado, $(|z| + |\lambda||)^2 = a^2 + b^2 + \lambda^2 + 2|\lambda||z| = a^2 + b^2 + \lambda^2 + 2\lambda|z|$. (0.2 ptos.). Luego, para la igualdad se debe cumplir que a = |z|, es decir, que $a = \sqrt{a^2 + b^2}$. (0.4 ptos.).

Para que esto se satisfaga, se necesita que b = 0 y $a \ge 0$ (0.7 ptos.).

ii) (1.5 ptos.) Pruebe que $|z| - 1 \le |z - 1| \le |z| + 1$.

Solución:

- $|z-1| \le |z| + |-1| = |z| + 1$. (0.5 ptos.).
- $|z| = |(z-1)+1| \le |z-1|+|1|$. De aquí se tiene que $|z|-1 \le |z-1|$. (1.0 pto.).
- **P3.** Sea $\widetilde{\mathbb{Q}} = \{a + bi, | a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$. El propósito de esta pregunta es determinar todos los posibles homomorfismos de $\widetilde{\mathbb{Q}}$ en \mathbb{C} . Para ello, considere una función no nula $\varphi : \widetilde{\mathbb{Q}} \longrightarrow \mathbb{C}$ tal que:

$$\forall x, y \in \widetilde{\mathbb{Q}}, \quad \varphi(x \cdot y) = \varphi(x)\varphi(y) \land \varphi(x+y) = \varphi(x) + \varphi(y).$$

- a) Pruebe que una función φ con estas características satisface que:
 - i) (1.4 ptos.) $\varphi(0) = 0$ y $\varphi(1) \neq 0$. A partir de esto, muestre que $\varphi(1) = 1$ y $\varphi(-1) = -1$. Indicación: Tenga en cuenta que 0 + 0 = 0 y que existe $x \in \widetilde{\mathbb{Q}}$ tal que $\varphi(x) \neq 0$.

Solución:

- Notemos que $\varphi(0+0) = \varphi(0) \Rightarrow \varphi(0) + \varphi(0) = \varphi(0) \Rightarrow \varphi(0) = 0$. (0.2 ptos.)
- Sea $x \in \widetilde{\mathbb{Q}}$ tal que $\varphi(x) \neq 0$. Se tiene que $\varphi(x) = \varphi(1 \cdot x) = \varphi(1) \cdot \varphi(x)$. Si $\varphi(1) = 0$ se tendría $\varphi(x) = 0$, una contradicción. (0.4 ptos.)
- Notemos que $\varphi(1) = \varphi(1 \cdot 1) = (\varphi(1))^2$. Se sigue que $\varphi(1)(\varphi(1) 1) = 0$. Como $\varphi(1) \neq 0$ se tiene $\varphi(1) = 1$ (los complejos, al ser cuerpo, no tienen divisores de cero). (0.4 ptos.)
- Notemos que $\varphi(0) = \varphi(1 + (-1)) = \varphi(1) + \varphi(-1) = 1 + \varphi(-1)$. Como $\varphi(0) = 0$, se concluye que $\varphi(-1) = -1$. **(0.4 ptos.)**
- ii) (0.8 ptos.) Para todo $n \in \mathbb{N}$ se tiene $\varphi(n) = n$ y que, si además $n \neq 0, \ \varphi(\frac{1}{n}) = \frac{1}{n}$.

Solución: Se puede argumentar por inducción. Para n=1, ya sabemos $\varphi(1)=1$. Además, si asumimos que para todo $n\in\mathbb{N},$ $\varphi(n)=N,$ entonces $\varphi(n+1)=\varphi(n)+\varphi(1)=n+1$. **(0.4 ptos.)**

Cuando $n \neq 0$, tenemos que $1 = \varphi(n/n) = \varphi(n)\varphi(1/n) = n \cdot \varphi(1/n)$. Se concluye que $\varphi(1/n) = 1/n$. (0.4 ptos.)

iii) (0.8 ptos.) Para todo $b \in \mathbb{Z}$, $\varphi(b) = b$. Usando lo anterior, muestre que $\varphi(x) = x$, para todo $x \in \mathbb{Q}$.

Solución: El ítem anterior muestra que basta probarlo para b=-n para $n\in\mathbb{N}$. Se tiene que $\varphi(-n)=\varphi((-1)n)=\varphi(-1)\cdot\varphi(n)=(-1)n=-n$. **(0.4 ptos.)**. Sea $x\in\mathbb{Q}$ con x=p/q. se tiene $\varphi(x)=\varphi(p/q)=\varphi(p)\cdot\varphi(1/q)=p/q=x$. **(0.4 ptos.)**

- b) Para probar que solo hay dos posibles homomorfismos:
 - i) (2.0 ptos.) Pruebe que $\varphi(i) \in \{i, -i\}$.

Solución: Notemos que $(\varphi(i))^2 = \varphi(i^2) = \varphi(-1) = -1$ (1.0 pto.). Luego, se sigue que $\varphi(i) = i$ o $\varphi(i) = -i$. (1.0 pto.)

ii) (1.0 pto.) Determine qué expresiones puede tomar $\varphi(a+bi)$ y concluya.

Solución: Los únicos homomorfismos son $\varphi(z)=z$ o $\varphi(z)=\overline{z}$ (0.4 ptos.). En efecto, para z=a+bi tenemos que $\varphi(z)=\varphi(a+bi)=\varphi(a)+\varphi(b)\varphi(i)=a+b\varphi(i)$. Por lo tanto $\varphi(a+bi)=a\pm bi$. (0.6 ptos.)

Duración: 3 horas.

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique las hipótesis.