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P.1. (a) (3 ptos.) Calcule el 4rea encerrada entre las curvas y>* =x ey =x, entrex =0y z = 4.
Antes de calcular, grafique las curvas en forma aproximada indicando todas las intersecciones.

Solucién:
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A=A, + A, donde
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A = —r)dr=-— ===
4 16—1 _8—1 15 14 17
Ay = = dr = — - - = _
2 /1 (z = Va)de = — 3 2 3 6
°
De donde A = 3.
9 1 42)3/2
(b) Considere la funcién f(z) = % donde z € [1,2].
i) (2 ptos.) Calcule el largo de la curva de ecuacién y = f(z), donde x € [1,2].
Yy / 3(2+932)1/2 ) 2 4
Solucién: f'(x) = g 2z = zv2+ 2% Luego 1 + f?(z) = 1+ 22° 4+ z*. De donde
1+ f2(x) =1+ 2% Es decir:
dl = (1 + 2*)dx
P No es necesario llamar d¢ al elemento de longitud, basta con calcular /1 + f2(z) =1 + 2
Asi: )
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i) (1 pto.) Calcule el drea del manto del sélido generado por la rotacidn de la regidn bajo la curva

y = f(z) en torno al eje OY.

OBS: Recuerde que A%(f) = 2n /bx\/l + [f'(x)]?dx.

Solucion:

4—-1 16—1) 21

2 2
Al(f) = / 2rzdl = / 2m(z + 2°)dz = 27 ( T3 =5
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P.2. (a) Estudie la convergencia de las siguientes integrales impropias

In

i) (2 ptos.) /1OO x(?’x)dm i) (2 ptos.) /Ooo mdm

Solucién: i) Esimpropia cuando x — oo (primera especie)

. In(x .. . .
Como lim (z) = 0, para z suficientemente grande se puede hacer el siguiente acotamiento:
T—00
In(z In(z 1
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por criterio de comparacién, la integral impropia es convergente igual que / —dx.
1z

OBS: También los 2 puntos se pueden obtener usando la definicién e integrar por partes:
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por partes: u = In(t) v =1 ; = lim (11(2)> + 7/ —dt
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ii) Es impropia cuando x — oo y cuando x — 07 (tercera especie = primera especie+segunda especie).

—T

Cuando x — 0T, se tiene que — % por lo tanto por criterio de comparacién por cuociente, con

2z +3
1 —x 1 1
(r) = -5, la integral impropia —C _dx es convergente igual que / ——dz.
! e o+ V(22 +3) o+ TH/?

Cuando = — +00, se tiene que < x4—1/3 por lo tanto por criterio de comparacién, con g(z) = —7,

e~
Vz(2z+3) —
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& e * 1
la integral impropia ———dx es convergente igual que ——dx.




(b) (2 ptos.) Sea R la regién encerrada entre el eje OX y la funcién f(x) =

x
v1— x2

con 0 < x < 1.

Escriba la integral impropia que permite calcular el volumen del sélido obtenido por la rotacién de R en

torno al eje OX. Estudie la convergencia de dicha integral.

Solucion: Para calcular el volumen se debe estudiar la integral:
" ra?de

Vox=| —=—
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Cuando z — 1~ basta comparar la integral anterior, con la integral de la funcién g(x) = \/1: ya que:
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Por lo tanto la integral Vpx es convergente igual que / —_—.
o (1—2)1/?

OBS: También los tltimos 1.5 ptos se pueden obtener haciendo el cambio de variables = sen(y)

{0.5]

/17 rxldx B /‘77/2 msen? () cos(p)dep
o Vi—-z2 o cos(¢p)
[ J 1.0
/e 1w 1
= / mwsen?(p)dp = 7= - —; Férmula conocida = — -
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