

Control 2 Recuperativo

P1. Sea \mathcal{R} una relación definida sobre \mathbb{Z}^3 de la siguiente forma:

$$(a,b,c)\mathcal{R}(x,y,z) \iff (a^2,b-c) = (x^2,y-z).$$

a) (1 pto.) Demuestre que \mathcal{R} es una relación de equivalencia.

Solución: Demostraremos que \mathcal{R} es una relación de equivalencia verificando que satisface las tres propiedades.

Reflexividad: Queremos verificar si $(a,b,c)\mathcal{R}(a,b,c)$, es decir, que se cumple que

$$(a^2, b - c) = (a^2, b - c).$$

Esto es cierto. Por lo tanto, \mathcal{R} es refleja. (0.2 ptos.)

Simetría: Sean $(a, b, c), (x, y, z) \in \mathbb{Z}^3$ tales que

$$(a,b,c)\mathcal{R}(x,y,z)\iff (a^2,b-c)=(x^2,y-z)\iff (x^2,y-z)=(a^2,b-c)\iff (x,y,z)\mathcal{R}(a,b,c).$$

Por lo tanto, \mathcal{R} es simétrica. (0.2 ptos.)

Transitividad: Sean $(a,b,c), (d,e,f), (x,y,z) \in \mathbb{Z}^3$, con $(a,b,c)\mathcal{R}(d,e,f)$ y $(d,e,f)\mathcal{R}(x,y,z)$. Sabemos que:

$$(a^2, b - c) = (d^2, e - f) \wedge (d^2, e - f) = (x^2, y - z)$$

por lo que

$$(a^2, b - c) = (d^2, e - f) = (x^2, y - z)$$

Con esto, hemos verificado que $(m, n)\mathcal{R}(p, q)$, y por lo tanto, \mathcal{R} es transitiva. (0.3 pto.)

Como \mathcal{R} es refleja, simétrica y transitiva, por lo que es una relación de equivalencia. (0.3 ptos.)

b) (1.5 pto.) Describa los elementos de la clase de equivalencia $[(1,2,3)]_{\mathcal{R}}$. ¿Esta clase contiene a (3,2,1)?

Solución: Tenemos:

$$[(1,2,3)]_{\mathcal{R}} = \{(a,b,c) \in \mathbb{Z}^3 : (a^2,b-c) = (1^2,2-3)\} = \{(a,b,c) \in \mathbb{Z}^3 : (a^2,b-c) = (1,-1)\},$$

es decir,

$$[(1,2,3)]_{\mathcal{R}} = \{(a,b,c) \in \mathbb{Z}^3 : a \in \{-1,1\} \land b = c-1\}$$

o bien

$$[(1,2,3)]_{\mathcal{R}} = \{(a,b,b+1) : a \in \{-1,1\} \land b \in \mathbb{Z}\},\$$

se aceptan también otras variaciones de esta descripción (1 pto).

El elemento (3,2,1) no pertenece a $[(1,2,3)]_{\mathcal{R}}$ porque $3 \notin \{-1,1\}$ (alternativamente, porque $3^2 \neq 1^2$, porque $2-1 \neq 2-3$ o argumentos parecidos **(0.5 pto)**.

c) (1.5 ptos.) Determine el cardinal de $[(1,2,3)]_{\mathcal{R}}$.

Solución: Primero, como $[(1,2,3)]_{\mathcal{R}} \subseteq \mathbb{Z}^3$, se tiene que $|[(1,2,3)]_{\mathcal{R}}| \leq |\mathbb{Z}^3|$ (0.4 pto). Como $|\mathbb{Z}^3| = |\mathbb{N}|$ sigue que $|[(1,2,3)]_{\mathcal{R}}| \leq |\mathbb{N}|$ (0.3 pto). Por el otro lado, tenemos $|\mathbb{N}| \leq |[(1,2,3)]_{\mathcal{R}}|$ porque $f: \mathbb{N} \to [(1,2,3)]_{\mathcal{R}}, f(n) = (1,n,n+1)$ es una función inyectiva: Si f(n) = f(m) entonces (1,n,n+1) = (1,m,m+1) por lo que n = m (0.6 pto). Esto implica que $|[(1,2,3)]_{\mathcal{R}}| = |\mathbb{N}|$ (0.2 pto).

d) (2 ptos.) Muestre que \mathbb{Z}^3/\mathcal{R} es numerable. Hint: Esto se puede probar separando en dos afirmaciones: $|\mathbb{Z}^3/\mathcal{R}| \leq |\mathbb{N}| \ y \ |\mathbb{N}| \leq |\mathbb{Z}^3/\mathcal{R}|$.

Solución:

Probamos primero $|\mathbb{N}| \leq |\mathbb{Z}^3/\mathcal{R}|$. Para esto consideramos la función $f: \mathbb{N} \to \mathbb{Z}^3/\mathcal{R}$ dada por $f(n) = [(n,0,0)]_{\mathcal{R}}$. Se tiene que f es inyectiva porque f(n) = f(m) implica que $[(n,0,0)]_{\mathcal{R}} = [(m,0,0)]_{\mathcal{R}}$, lo que implica que $n^2 = m^2$ que significa que n = m porque ambos son naturales (0.6 pto). Por lo tanto $|\mathbb{N}| \leq |\mathbb{Z}^3/\mathcal{R}|$ (0.4 pto).

Ahora probamos $|\mathbb{Z}^3/\mathcal{R}| \leq |\mathbb{N}|$. Para esto, consideramos la función $f: \mathbb{Z}^3 \to \mathbb{Z}^3/\mathcal{R}$ dada por $f(a,b,c) = [(a,b,c)]_{\mathcal{R}}$. La función f es epiyectiva (porque las clases de equivalencia partitionan el conjunto sobre el cual la relación de equivalencia está definida) (0.3 pto). Por lo tanto, $|\mathbb{Z}^3/\mathcal{R}| = |f(\mathbb{Z}^3)| \leq |\mathbb{Z}^3| = |\mathbb{N}|$ (0.5 pto), donde la desigualdad se tiene por una propiedad del apunte (0.2 pto).

P2. a) (2 ptos) En el conjunto $\mathbb{Z} \times \mathbb{Z}$ se define la relación \mathcal{Q} de la siguiente forma:

$$(a,b)\mathcal{Q}(c,d) \Leftrightarrow \left[a \leq c \wedge b = d\right].$$

Muestre que \mathcal{Q} es una relación de orden. ¿Es orden total?

Solución: Demostraremos que Q es una relación de equivalencia verificando que satisface las tres propiedades.

Reflexividad: Queremos verificar $(a,b)\mathcal{Q}(a,b)$ para todo $(a,b)\in\mathbb{Z}\times\mathbb{Z}$, es decir, que se cumple que

$$a \le a \land b = b$$
.

Esto es cierto. Por lo tanto, \mathcal{R} es refleja. (0.2 ptos.)

Antisimetría: Sean $(a,b),(x,y)\in\mathbb{Z}^2$ tales que

$$(a,b)\mathcal{Q}(x,y) \wedge (x,y)\mathcal{Q}(a,b)$$

Esto se tiene si y solamente si

$$\left[(a \le x \land b = y) \land (x \le a \land y = b) \right] \iff \left[a = x \land b = y \right] \iff (a, b) = (x, y).$$

Por lo tanto, Q es antisimétrica. (0.4 ptos.)

Transitividad: Sean $(a,b),(c,d),(e,f) \in \mathbb{Z}^2$, con $(a,b)\mathcal{Q}(c,d)$ y $(c,d)\mathcal{Q}(e,f)$. Sabemos que:

$$\left[(a \le c \land b = d) \land (c \le e \land d = f) \right] \iff \left[a \le e \land b = f \right] \iff (a, b) \mathcal{Q}(e, f)$$

por lo que Q es transitiva. (0.4 pto.)

Como \mathcal{R} es refleja, antisimétrica y transitiva, por lo que es una relación de orden (0.3 ptos). No es orden total, porque por ejemplo, los elementos (1,1) y (1,2) no son comparables (0.4

ptos por encontrar a un par no comparable), lo que se justifica como sigue: $(1,1)\mathcal{Q}(1,2)$ no se tiene porque $1 \neq 2$ y $(1,2)\mathcal{Q}(1,1)$ no se tiene porque $2 \neq 1$ (**0.3 ptos** por justificar).

b) (2 ptos) Sea $n \in \mathbb{N}$. Calcule

$$\sum_{k=0}^{n} \frac{k!(k^2+k+1)}{n+1}.$$

Solución:

$$\sum_{k=0}^{n} \frac{k!(k^2+k+1)}{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} k!(k^2+k+1)$$
 (0.1 pto)

Además,

$$k^{2} + k + 1 = k^{2} + 2k + 1 - k = (k+1)^{2} - k$$
 (0.2 pto)

por lo que

$$\sum_{k=0}^{n} k!(k^2 + k + 1) = \sum_{k=0}^{n} k! \Big((k+1)^2 - k \Big) = \sum_{k=0}^{n} \Big((k+1)^2 k! - k \cdot k! \Big) = \sum_{k=0}^{n} \Big((k+1) \cdot (k+1)! - k \cdot k! \Big)$$
 pto)

Por la propiedad telescópica, tenemos

$$\sum_{k=0}^{n} k!(k^2 + k + 1) = \sum_{k=0}^{n} \left((k+1) \cdot (k+1)! - k \cdot k! \right) = (n+1) \cdot (n+1)! - 0 \cdot 0!$$
 (0.7 pto)

Observamos que

$$(n+1)\cdot(n+1)!-0\cdot0!=(n+1)\cdot(n+1)!$$
 (0.1 pto)

Por lo tanto,

$$\sum_{k=0}^{n} \frac{k!(k^2+k+1)}{n+1} = \frac{1}{n+1} \Big((n+1) \cdot (n+1)! \Big) = (n+1)!$$
 (0.2 pto)

c) (2 ptos.) En la expansión de $(1+x)^{11}$, encuentre el coeficiente de x^7 . Justifique.

Solución: Por el Teorema Binomial (o Teorema de Newton), se tiene que $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$ para todo $a,b \in \mathbb{R}$ y todo $n \in \mathbb{N}$ (0.5 pto). Por lo tanto,

$$(1+x)^{11} = (x+1)^{11} = \sum_{k=0}^{11} {11 \choose k} x^k 1^{11-k} = \sum_{k=0}^{11} {11 \choose k} x^k$$
 (0.5 pto)

Entonces, el coeficiente de x^7 es $\binom{11}{7} = \frac{11!}{7! \cdot (11-7)!} = \frac{11!}{7! \cdot 4!}$ (0.5 pto). Calculamos

$$\binom{11}{7} = \frac{11!}{7! \cdot 4!} = \frac{11 \cdot 10 \cdot 9 \cdot 8}{4!} = \frac{11 \cdot 10 \cdot 9 \cdot 8}{4 \cdot 3 \cdot 2} = 11 \cdot 10 \cdot 3 = 330$$
 (0.5 pto)

P3. a) (2 ptos) Use la identidad de Pascal para probar que para todo $n, k \in \mathbb{N}$ con $n \geq k \geq 2$ se tiene que

$$\binom{n+2}{k} = \binom{n}{k-2} + 2\binom{n}{k-1} + \binom{n}{k}.$$

Solución: La identidad de Pascal es

$$\binom{m+1}{\ell+1} = \binom{m}{\ell} + \binom{m}{\ell+1}$$
 (0.5 pto).

Aplicando esta fórmula con m=n+1 y $\ell=k-1$, se obtiene

$$\binom{n+2}{k} = \binom{n+1}{k-1} + \binom{n+1}{k}$$
 (0.4 pto).

Aplicando la identidad de Pascal de nuevo, esta vez con m=n y $\ell=k-2$, se obtiene

$$\binom{n+1}{k-1} = \binom{n}{k-2} + \binom{n}{k-1}.$$
 (0.4 pto).

Aplicando la identidad de Pascal de nuevo, esta vez con m=n y $\ell=k-1$, se obtiene

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$$
 (0.4 pto).

Juntando todo obtenemos

$$\binom{n+2}{k} = \binom{n+1}{k-1} + \binom{n+1}{k} = \binom{n}{k-2} + 2\binom{n}{k-1} + \binom{n}{k}.$$
 (0.3 pto).

b) Se define $\mathcal{B} = \{\binom{n}{k} : n, k \in \mathbb{N}, 0 \le k \le n\}$ y para $r \in \mathbb{N}$ se define $\mathcal{B}_r = \{\binom{r}{k} : k \in \mathbb{N}, 0 \le k \le r\}$. Sabemos que \mathcal{B} es numerable (no hace falta mostrar esto).

4

1) (1 pto) Muestre que $|\mathcal{B}_r| \leq \frac{r}{2} + 2$.

Solución: Como $\binom{r}{k} = \binom{r}{r-k}$ (0.3 pto) tenemos que

$$\mathcal{B}_r = \left\{ \begin{pmatrix} r \\ k \end{pmatrix} : k \in \mathbb{N}, 0 \le k \le r \right\} = \left\{ \begin{pmatrix} r \\ k \end{pmatrix} : k \in \{0, \dots, \lfloor \frac{r}{2} \rfloor + 1 \} \right\}$$
 (0.3 pto).

Entonces, sabemos que $f: \{0, \ldots, \lfloor \frac{r}{2} \rfloor + 1\} \to \mathcal{B}_r$ dada por $f(j) = \binom{r}{j}$ es epiyectiva, por lo que $\mathcal{B}_r = f(\{0, \ldots, \lfloor \frac{r}{2} \rfloor + 1\})$ tiene cardinal a lo más $|\{0, \ldots, \lfloor \frac{r}{2} \rfloor + 1\}| \le \frac{r}{2} + 2$ (0.4 **pto**).

2) (1 pto) Determine

$$|\mathcal{B} \setminus \mathcal{B}_{100}|$$
.

Solución: Por la proposición sobre perturbaciones finitas, es decir la proposición que dice $|A \setminus B| = |A|$ si A es infinito y B es finito ((0.5 pto) por esta justificación), y como B_{100} es finito por el item anterior y \mathcal{B} es numerable, se concluye que $|\mathcal{B} \setminus \mathcal{B}_{100}|$ es numerable ((0.5 pto)).

3) (1 pto) Sea $s \in \mathbb{N}$ un natural. Determine

$$|\mathcal{B}\setminus \bigcup_{i=0}^{s}\mathcal{B}_{i}|.$$

Solución: Uniones finitas de conjuntos finitas son finitas ((0.5 pto)). Como $s \in \mathbb{N}$ y cada \mathcal{B}_i es finito por la parte P3b1), y por la proposición sobre perturbaciones finitas, se concluye ((0.5 pto)).

4) (1 pto) Determine

$$|\mathcal{B}\setminus \bigcup_{i\in\mathbb{N}}\mathcal{B}_i|.$$

Solución: Probamos que $|\mathcal{B}\setminus\bigcup_{i\in\mathbb{N}}\mathcal{B}_i|=0$. Para esto, es suficiente probar que $\mathcal{B}\setminus\bigcup_{i\in\mathbb{N}}\mathcal{B}_i=\emptyset$, o sea, $\mathcal{B}\subseteq\bigcup_{i\in\mathbb{N}}\mathcal{B}_i$ ((0.4 pto)). Para ver esto, sea $x\in\mathcal{B}$ arbitrario. Por la definición de \mathcal{B} , tenemos que $x=\binom{r}{k}$ para ciertos $r,k\in\mathbb{N}$ con $k\leq r$ ((0.1 pto)). Entonces $x\in\mathcal{B}_r$ ((0.2 pto)). Como $\mathcal{B}_r\subseteq\bigcup_{i\in\mathbb{N}}\mathcal{B}_i$, se deduce que $x\in\bigcup_{i\in\mathbb{N}}\mathcal{B}_i$, que es lo que se queria ver ((0.3 pto)).

Duración: 3 horas.