

Control 2

P1. Sea \mathcal{R} una relación definida sobre $\mathbb{N} \times \mathbb{N}$ de la siguiente forma:

$$(m,n)\mathcal{R}(r,s) \iff m+s=n+r.$$

a) (2.5 ptos.) Demuestre que \mathcal{R} es una relación de equivalencia.

Solución: Demostraremos que \mathcal{R} es una relación de equivalencia verificando que satisface las tres propiedades.

Reflexividad: Queremos verificar si $(m, n)\mathcal{R}(m, n)$, es decir, que se cumple que

$$m+n=n+m$$
.

Esto es cierto, ya que la suma de números naturales es conmutativa. Por lo tanto, \mathcal{R} es refleja. (0.5 ptos.)

Simetría: Sean $(m, n), (r, s) \in \mathbb{N} \times \mathbb{N}$ tales que

$$(m,n)\mathcal{R}(r,s) \iff m+s=n+r.$$

Por la conmutatividad de la suma, tenemos que:

$$r + n = n + r = m + s = s + m \implies (r, s)\mathcal{R}(m, n).$$

Por lo tanto, \mathcal{R} es simétrica. (0.5 ptos.)

Transitividad: Sean $(m, n), (r, s), (p, q) \in \mathbb{N} \times \mathbb{N}$. Sabemos que:

$$(m,n)\mathcal{R}(r,s) \iff m+s=n+r$$

у

$$(r,s)\mathcal{R}(p,q) \iff r+q=s+p.$$

Luego, al sumar ambas igualdades y simplificar tenemos que:

$$(m+s) + (r+q) = (n+r) + (s+p) \implies m+q = n+p.$$

Con esto, hemos verificado que $(m, n)\mathcal{R}(p, q)$, y por lo tanto, \mathcal{R} es transitiva. (1.0 pto.)

Como \mathcal{R} es refleja, simétrica y transitiva, por lo que es una relación de equivalencia. (0.5 ptos.)

b) (0.5 ptos.) Describa los elementos de las clases de equivalencia $[(0,0)]_{\mathcal{R}}$, $[(0,1)]_{\mathcal{R}}$ y $[(1,0)]_{\mathcal{R}}$.

Solución:

Comencemos describiendo la clase de equivalencia $[(0,0)]_{\mathcal{R}}$. Buscamos todos los pares $(r,s) \in \mathbb{N} \times \mathbb{N}$ tales que:

$$(0,0)\mathcal{R}(r,s) \iff 0+s=0+r.$$

Por tanto s = r y así $[(0,0)]_{\mathcal{R}}$ contiene todos los pares de la forma (r,r), donde $r \in \mathbb{N}$:

$$[(0,0)]_{\mathcal{R}} = \{(r,r) \mid r \in \mathbb{N}\}.$$

(0.1 ptos.)

De forma análoga, los elementos de $[(0,1)]_{\mathcal{R}}$ son todos los pares $(r,s) \in \mathbb{N} \times \mathbb{N}$ tales que:

$$(0,1)\mathcal{R}(r,s) \iff 0+s=1+r.$$

Es decir, s = r + 1, y luego:

$$[(0,1)]_{\mathcal{R}} = \{(r,r+1) \mid r \in \mathbb{N}\}.$$

(0.2 ptos.)

Por último, los elementos de $[(1,0)]_{\mathcal{R}}$ son todos los pares $(r,s) \in \mathbb{N} \times \mathbb{N}$ tales que $1+s=0+r \iff r=s+1$. Por lo tanto,

$$[(1,0)]_{\mathcal{R}} = \{ (r+1,r) \mid r \in \mathbb{N} \}.$$

(0.2 ptos.)

c) (3.0 ptos.) Demuestre que el conjunto cociente es:

$$(\mathbb{N} \times \mathbb{N})/\mathcal{R} = \{ [(0,n)]_{\mathbb{R}} \mid n \in \mathbb{N} \} \cup \{ [(n,0)]_{\mathbb{R}} \mid n \in \mathbb{N} \setminus \{0\} \}.$$

Solución:

El conjunto cociente $(\mathbb{N} \times \mathbb{N})/\mathcal{R}$ está compuesto por todas las clases de equivalencia de la relación \mathcal{R} sobre $\mathbb{N} \times \mathbb{N}$. De esta forma, es inmediato que:

$$\{[(0,n)]_{\mathcal{R}} \mid n \in \mathbb{N}\} \cup \{[(n,0)]_{\mathcal{R}} \mid n \in \mathbb{N} \setminus \{0\}\} \subseteq (\mathbb{N} \times \mathbb{N})/\mathcal{R}.$$

(0.5 ptos.)

Para demostrar la otra inclusión, podemos proceder al menos de dos formas distintas.

Primera forma:

Consideremos $[(r,s)]_{\mathcal{R}} \in (\mathbb{N} \times \mathbb{N})/\mathcal{R}$, con $r,s \in \mathbb{N}$. Supongamos primero que $r \leqslant s$. En este caso, al tomar n := s - r podemos observar que $n \in \mathbb{N}$ y además que:

$$(0,n)\mathcal{R}(r,s) \iff 0+s=n+r \iff 0+s=(s-r)+r \iff s=s \iff V.$$

(0.5 ptos.)

Luego, $(0,n)\mathcal{R}(r,s)$ y por tanto $[(r,s)]_{\mathcal{R}} = [(0,n)]_{\mathcal{R}}$, dado que las clases de dos elementos que se relacionan son iguales. Así:

$$[(r,s)]_{\mathcal{R}} \in \{[(0,n)]_{\mathbb{R}} \mid n \in \mathbb{N}\}.$$

(0.3 ptos.)

Por otro lado, cuando r > s, definimos $n := r - s \in \mathbb{N} \setminus \{0\}$. Notemos que:

$$(n,0)\mathcal{R}(r,s) \iff n+s=0+r \iff (r-s)+s=0+r \iff r=r \iff V.$$

(0.5 ptos.)

Luego, $(n,0)\mathcal{R}(r,s)$ y por tanto $[(r,s)]_{\mathcal{R}} = [(n,0)]_{\mathcal{R}}$. Se tiene entonces que:

$$[(r,s)]_{\mathcal{R}} \in \{[(n,0)]_{\mathbb{R}} \mid n \in \mathbb{N} \setminus \{0\}\}.$$

(0.3 ptos.)

Como lo anterior vale para cualquier par $(r,s) \in \mathbb{N} \times \mathbb{N}$, se concluye que

$$(\mathbb{N} \times \mathbb{N})/\mathcal{R} \subseteq \{[(0,n)]_{\mathbb{R}} \mid n \in \mathbb{N}\} \cup \{[(n,0)]_{\mathbb{R}} \mid n \in \mathbb{N} \setminus \{0\}\}.$$

(0.4 ptos.)

Segunda forma:

Una manera alternativa es analizar las clases de equivalencia del conjunto

$$\{[(0,n)]_{\mathbb{R}} | n \in \mathbb{N}\} \cup \{[(n,0)]_{\mathbb{R}} | n \in \mathbb{N} \setminus \{0\}\}.$$

Consideremos primero la clase de equivalencia $[(0,n)]_{\mathcal{R}}$ para $n \in \mathbb{N}$. Esta clase contiene todos los pares $(r,s) \in \mathbb{N} \times \mathbb{N}$ que satisfacen:

$$(0,n)\mathcal{R}(r,s) \iff 0+s=n+r \iff s=n+r.$$

(0.4 ptos.)

Esto significa que los pares (r, s) en $[(0, n)]_{\mathcal{R}}$ son todos aquellos tales que que s = r + n. Por tanto,

$$(r, r+n)\mathcal{R}(0, n) \iff [(r, r+n)]_{\mathcal{R}} = [(0, n)]_{\mathcal{R}}.$$

(0.4 ptos.)

Por otro lado, la clase de equivalencia $[(n,0)]_{\mathcal{R}}$, para n>0, contiene todos los pares $(r,s)\in \mathbb{N}\times\mathbb{N}$ que satisfacen:

$$(n,0)\mathcal{R}(r,s) \iff n+s=0+r \iff n+s=r$$

(0.4 ptos.)

Esto significa que los pares (r,s) en $[(n,0)]_{\mathcal{R}}$ son tales que s=r-n. Por tanto,

$$(r, r-n)\mathcal{R}(n,0) \iff [(r, r-n)]_{\mathcal{R}} = [(n,0)]_{\mathcal{R}}.$$

(0.4 ptos.)

Como cada $s \in \mathbb{N}$ satisface que $s = r \pm n$, para algún $n \in \mathbb{N}$, concluímos que el conjunto $\{[(0,n)]_{\mathcal{R}} | n \in \mathbb{N}\} \cup \{[(n,0)]_{\mathcal{R}} | n \in \mathbb{N} \setminus \{0\}\}$ contiene todas las clases de $(\mathbb{N} \times \mathbb{N})/\mathcal{R}$.

(0.4 ptos.)

Cualquiera de estas dos formas nos permite concluir la igualdad:

$$(\mathbb{N} \times \mathbb{N})/\mathcal{R} = \{[(0,n)]_{\mathbb{R}} \mid n \in \mathbb{N}\} \cup \{[(n,0)]_{\mathbb{R}} \mid n \in \mathbb{N} \setminus \{0\}\}.$$

(0.5 ptos.)

P2. a) (1.0 pto.) Muestre que $\sum_{k=0}^{523} {523 \choose k} (-2)^k = -1$.

Solución:

Se puede aplicar el teorema del binomio:

$$\sum_{k=0}^{523} {523 \choose k} (-2)^k = \sum_{k=0}^{523} {523 \choose k} (-2)^k (1)^{\frac{523-k}{255-k}} = (-2+1)^{523} = (-1)^{523} = -1.$$
 (1.0 pto.)

b) (1.5 ptos) Sea $n \in \mathbb{N}$. Calcule $\sum_{k=1}^{n} \frac{1}{k(k+3)}$.

Solución:

Usando fracciones parciales, notamos que $\frac{1}{k} - \frac{1}{k+3} = \frac{3}{k(k+3)}$, y por lo tanto

$$\sum_{k=1}^{n} \frac{1}{k(k+3)} = \frac{1}{3} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+3} \right)$$

(0.5 ptos.)

Se sigue que

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+3} \right) = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) + \sum_{k=1}^{n} \left(\frac{1}{k+1} - \frac{1}{k+2} \right) + \sum_{k=1}^{n} \left(\frac{1}{k+2} - \frac{1}{k+3} \right).$$

(0.5 ptos.)

Aplicando la propiedad telescópica para cada suma, se tiene que el resultado final es

$$\frac{1}{3}\left(1 - \frac{1}{n+1} + \frac{1}{2} - \frac{1}{n+2} + \frac{1}{3} - \frac{1}{n+3}\right) = \frac{1}{3}\left(\frac{11}{6} - \frac{1}{n+1} - \frac{1}{n+2} - \frac{1}{n+3}\right).$$

(0.5 ptos.)

c) Sea
$$J = \{[a, b) \subseteq \mathbb{R} : \sqrt{a}, \sqrt{b} \in \mathbb{N}, \sqrt{b} = \sqrt{a} + 1\}.$$

i) (2.0 ptos.) Demuestre que J es numerable.

Solución:

Definimos una función $f: \mathbb{N} \to J$, $f(n) = [n^2, (n+1)^2)$. (0.5 ptos.)

Observamos que f es epiyectiva, es decir, que $f(\mathbb{N}) = J$. Esto porque para cada $[a,b) \in J$ tenemos que $\sqrt{a}, \sqrt{b} \in \mathbb{N}$ con $\sqrt{b} = \sqrt{a} + 1$, por lo que $f(\sqrt{a}) = [a,b)$. Por una proposición vista en clases, tenemos $|f(\mathbb{N})| \leq |\mathbb{N}|$. Concluimos que $|J| \leq |f(\mathbb{N})| \leq |\mathbb{N}|$. (1.0 pto.) Y finalmente, como J es infinito, sabemos que J es numerable. (0.5 ptos.)

ii) (1.5 ptos.) Definimos la relación \mathcal{R} en J como

$$[a,b) \mathcal{R} [c,d) \iff c \leqslant a.$$

Demuestre que \mathcal{R} es una relación de orden.

Solución:

Es inmediato ver que la relación es refleja, ya que $a \leq a \implies [a,b) \mathcal{R}[a,b)$. (0.4 ptos.) Además, es antisimétrica porque para todo $[a,b), [c,d) \in J$, se tiene

$$[a,b)\,\mathcal{R}\,[c,d)\wedge[c,d)\,\mathcal{R}\,[a,b)\iff c\leqslant a\wedge a\leqslant c\implies a=c.$$

Y entonces, por la definición de J, tenemos que $b=(\sqrt{a}+1)^2=(\sqrt{c}+1)^2=d$ y por tanto [a,b)=[c,d) (0.6 ptos.)

Por último, es transitiva porque para todos $[a,b),[c,d),[e,f) \in J$ se tiene:

$$[a,b) \mathcal{R}[c,d) \wedge [c,d) \mathcal{R}[e,f) \in J \iff c \leqslant a \wedge e \leqslant c \implies e \leqslant a$$

por lo que $[a,b) \mathcal{R}[e,f)$ (0.5 ptos.)

P3. Para $i \in \mathbb{N}$, sea $B_i = \{(i, 1), (i, 2), \dots, (i, i)\}.$

a) (2.0 ptos.) Muestre que $|B_i|=i$ para cada $i\in\mathbb{N},$ y luego determine $\left|\bigcup_{i=0}^nB_i\right|,$ para $n\in\mathbb{N}.$

Solución:

Sea $i \in \mathbb{N}$. Los elementos de B_i se pueden enumerar como $b_1 = (i, 1), b_2 = (i, 2), \dots b_i = (i, i)$. Por lo tanto, $|B_i| = i$. (0.5 ptos.)

Notamos que para $i \neq j$ se tiene $B_i \cap B_j = \emptyset$ porque si $(a,b) \in B_i \cap B_j$ entonces a = i y a = j, una contradicción. (0.5 ptos.)

Por una proposición vista en clases, tenemos que $|\bigcup_{i=0}^n B_i| = \sum_{i=0}^n |B_i|$ (0.5 ptos.). Por lo tanto, $|\bigcup_{i=0}^n B_i| = \sum_{i=0}^n i = \frac{n(n+1)}{2}$ (0.5 ptos.)

b) (1.0 pto.) Determine si $\bigcup_{i\in\mathbb{N}} B_i$ es igual a $\mathbb{N}\times\mathbb{N}$. Tenga en cuenta que $0\in\mathbb{N}$.

Solución: No son iguales, porque $(0,1) \in \mathbb{N} \times \mathbb{N}$, pero $(0,1) \notin B_i$, para todo $i \in \mathbb{N}$ (1.0 pto.)

5

c) (1.5 ptos.) Determine $|\mathcal{P}(B_i) \times B_4|$ para cada $i \in \mathbb{N}$.

Solución:

Por una proposición vista en clases, para todo conjunto finito tenemos que $|\mathcal{P}(A)| = 2^{|A|}$. (0.5 ptos.).

También, por otra proposición, sabemos que $|A \times B| = |A| \cdot |B|$, para conjuntos finitos A, B. (0.5 ptos.)

Entonces $|\mathcal{P}(B_i) \times B_4| = |\mathcal{P}(B_i)| \cdot |B_4| = 2^i \cdot 2^2 = 2^{i+2}$. (0.5 ptos.)

d) (1.5 ptos.) Sea $f:B_{10} \to \{11,12,13,\dots,20\}$ una función inyectiva. ¿Es f biyectiva?

Solución:

Por una proposición vista en clases, si A, B son conjuntos finitos con |A| = |B| entonces una función es inyectiva si y solamente si es epiyectiva. (1.0 pto.).

Luego, solo basta mostrar que $|B_{10}| = |\{11, 12, \dots, 20\}|$. Esto es cierto porque en la parte a) se probó que $|B_i| = i$ y por tanto $|B_{10}| = 10$. Además, es inmediato que el segundo conjunto también tiene cardinal 10. (0.5 ptos.)

Duración: 3 horas.

Nota: Recuerde justificar adecuadamente sus argumentos. Si está usando resultados conocidos, indíquelo claramente.