

Control 1

P1. a) Sean p, q y r tres proposiciones. Considere la proposición lógica dada por:

$$[(p \implies (\overline{r} \implies q)) \land \overline{q}] \implies (p \implies r)$$

i) (2.0 ptos.) Demuestre, sin usar tablas de verdad, que es una tautología.

Solución:

Primera forma. Simbólica (usando propiedades y el álgebra booleana). Comencemos desarrollando la expresión del lado izquierdo de la implicancia. Tenemos que:

Segunda forma. Exploratoria. Para demostrar que la implicancia es una tautología, asumamos que $(p \implies (\overline{r} \implies q)) \wedge \overline{q}$ es verdadera y mostremos que $p \implies r$ también lo es. Notemos que si p es falsa, entonces $p \implies r$ es automáticamente verdadera, independientemente del valor de verdad de r. (0.5 ptos.)

Por tanto, basta considerar el caso en que $p \iff V$. Como $(p \implies (\overline{r} \implies q)) \land \overline{q} \iff V$, en particular tenemos que $(p \implies (\overline{r} \implies q)) \iff V$. Luego, concluímos que $(\overline{r} \implies q) \iff V$. (0.5 ptos.). Por otro lado, como $\overline{q} \iff V$ se tiene que $q \iff F$. Luego, como $\overline{r} \implies q$ es verdadera, necesariamente $\overline{r} \iff F$, es decir, $r \iff V$. (0.5 ptos.)

Con esto, hemos verificado que si $p \iff V$, entonces $r \iff V$, lo que demuestra que $p \implies r$ es verdadera. (0.5 ptos.).

ii) (1.0 pto.) Demuestre, a través de un contraejemplo, que no se tiene la equivalencia. Para ello, presente valores de verdad de p, q y r para los que la implicancia hacia la izquierda no es verdadera.

Solución: La inversa es la siguiente proposición:

$$(p \implies r) \implies [(p \implies (\overline{r} \implies q)) \land \overline{q}]$$

Para mostrar que no es verdadera, debemos encontrar valores de verdad para los que $p \implies r$ es verdadera y $(p \implies (\overline{r} \implies q)) \land \overline{q}$ es falsa. (0.5 ptos.). Notemos que si p y r son verdaderas, lo primero se cumple. Por otro lado, si $q \iff V$, entonces $\overline{q} \iff F$, lo que hace que la segunda

sea falsa, independiente del valor de verdad de $p \implies (\overline{r} \implies q)$. (0.5 ptos.).

- b) Sea T_n una secuencia definida por recurrencia como $T_1=1,\,T_2=1$ y $T_n=n-T_{n-1}-T_{n-2},$ para $n\geqslant 3.$
 - i) (1.0 pto.) Pruebe de manera algebraica que $T_{n+3}=1+T_n$, para todo $n\geqslant 1$.

Solución:

Sustituyendo $T_{n+2} = (n+2) - T_{n+1} - T_n$ en la expresión para T_{n+3} se tiene:

$$T_{n+3} = (n+3) - T_{n+2} - T_{n+1}$$

$$= (n+3) - [(n+2) - T_{n+1} - T_n] - T_{n+1}$$

$$= (n+3) - (n+2) + T_{n+1} + T_n - T_{n+1}$$

$$= 1 + T_n. \quad \textbf{(1.0 pto.)}.$$

ii) (2.0 ptos.) Demuestre por inducción en k que

$$T_{3k-2} = T_{3k-1} = T_{3k} = k$$
, para todo $k \ge 1$.

Indicación: Puede usar el resultado anterior incluso si no lo ha probado.

Solución: Haremos la demostración por inducción en k usando la parte i).

Caso base: Por definición, $T_1 = T_2 = 1$. Además, $T_3 = 3 - T_2 - T_1 = 3 - 1 - 1 = 1$, por lo que la proposición se cumple para k = 1. (0.5 ptos.)

Paso inductivo: Supongamos que $T_{3k-2} = T_{3k-1} = T_{3k} = k$. Notemos que $T_{3(k+1)-2} = T_{(3k-2)+3} = T_{3k-2} + 1 = k+1$, donde hemos usado i) y la igualdad $T_{3k-2} = k$ de la hipótesis inductiva (1.0 pto.). De manera análoga, se puede mostrar que $T_{3(k+1)-1} = k+1$ y $T_{3(k+1)} = k+1$, con lo que se cumple para k+1. (0.5 ptos.)

P2. a) (1.5 ptos.) Demuestre que, para todo $n \ge 1$, el conjunto $\{0,1\}^n \cap \{1,2\}^n$ tiene exactamente un elemento y determine cuál es.

Solución:

El conjunto $\{a,b\}^n$ consiste de todas las n-tuplas (x_1,x_2,\ldots,x_n) con $x_i\in\{a,b\}$ para todo $i\in\{1,2,\ldots,n\}$. Entonces, la intersección $\{0,1\}^n\cap\{1,2\}^n$ consiste de todas las n-tuplas (x_1,x_2,\ldots,x_n) donde para todo $i\in\{1,2,\ldots,n\},\ x_i\in\{0,1\},\ y$ para todo $i\in\{1,2,\ldots,n\},\ x_i\in\{1,2\}.$ (0.5 **ptos.)** En otras palabras, $\{0,1\}^n\cap\{1,2\}^n$ consiste de todas las n-tuplas (x_1,x_2,\ldots,x_n) , donde para todo $i\in\{1,2,\ldots,n\},\ x_i\in\{0,1\}$ y $x_i\in\{1,2\}$. O sea, $x_i\in\{0,1\}\cap\{1,2\}=\{1\}$. Es decir, $\{0,1\}^n\cap\{1,2\}^n=\{(x_1,x_2,\ldots,x_n): \forall i\in\{1,2,\ldots,n\}, x_i=1\}=\{(1,1,\ldots,1)\}$ (1.0 **pto.)**

b) (1.5 ptos.)

Determine si lo siguiente es verdadero para todos conjuntos $A, B, C \subseteq \mathbb{N}$ (donde los complementos se toman con respecto a \mathbb{N}):

$$A \cup C^c = (C \setminus (A \cup B))^c.$$

Justifique su respuesta.

Solución: La igualdad no se cumple. Un posible contraejemplo es $A = \emptyset$, $B = C = \{1\}$ (0.5 ptos.). En este caso, tenemos

$$A \cup C^c = \emptyset \cup (\mathbb{N} \setminus \{1\}) = \mathbb{N} \setminus \{1\}$$
$$(C \setminus (A \cup B))^c = (\{1\} \setminus (\emptyset \cup \{1\}))^c = (\{1\} \setminus \{1\})^c = \emptyset^c = \mathbb{N}$$

que son distintos (1.0 pto.).

c) (3.0 ptos.) Sea E el conjunto universo y considere $B \subseteq E$. Sea $f: \mathcal{P}(E) \to \mathcal{P}(E)$ la función dada por

$$f(A) = A^c \triangle B$$
.

Demuestre que

$$f^{-1}(\mathcal{P}(B)) = \{ A \subseteq E : B^c \subseteq A \}$$

donde $f^{-1}(\mathcal{P}(B))$ es el conjunto preimagen de $\mathcal{P}(B)$ bajo f.

Solución: Por definición del conjunto preimagen tenemos $f^{-1}(\mathcal{P}(B)) = \{A \in \mathcal{P}(E) : f(A) \in \mathcal{P}(B)\}$ (0.5 ptos.). Es decir,

$$f^{-1}(\mathcal{P}(B)) = \{ A \in \mathcal{P}(E) : f(A) \subseteq B \} = \{ A \in \mathcal{P}(E) : A^c \triangle B \subseteq B \} = \{ A \subseteq E : A^c \triangle B \subseteq B \}$$

(0.5 ptos.). Notemos que $A^c \triangle B = (A^c \setminus B) \cup (B \setminus A^c)$ y por lo tanto, $A^c \triangle B \subseteq B$ equivale a $(A^c \setminus B) \cup (B \setminus A^c) \subseteq B$ **(0.5 ptos.)** lo que equivale a $A^c \setminus B \subseteq B$ porque siempre es verdadero que $(B \setminus A^c) \subseteq B$ **(0.5 ptos.)**. Finalmente, $A^c \setminus B \subseteq B$ equivale a $A^c \subseteq B$ **(0.5 ptos.)**. Concluimos que

$$f^{-1}(\mathcal{P}(B)) = \{ A \subseteq E : A^c \subseteq B \} = \{ A \subseteq E : B^c \subseteq A \}$$

(1.0 pto.).

P3. a) Sea E conjunto universo y sea $A \subseteq E$ un conjunto fijo. Se define la siguiente función:

$$\begin{array}{cccc} f: & \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ & X & \longmapsto & X \triangle A \end{array}$$

i) (1.0 pto.) Demuestre que f es biyectiva.

Solución:

■ Inyectividad: Sean $X_1, X_2 \subseteq A$. Notemos que $X_1 \triangle A = X_2 \triangle A \implies (X_1 \triangle A) \triangle A = (X_2 \triangle A) \triangle A$. Luego, como la diferencia simétrica es asociativa,

$$(X_1 \triangle A) \triangle A = (X_2 \triangle A) \triangle A \implies X_1 \triangle (A \triangle A) = X_2 \triangle (A \triangle A)$$

$$\implies X_1 \triangle \emptyset = X_2 \triangle \emptyset$$

$$\implies X_1 = X_2. \quad \textbf{(0.5 ptos.)}$$

Se concluye que f es inyectiva.

■ Epiyectividad: Sea $Y \subseteq E$. Definamos $X := Y \triangle A$. Luego:

$$f(X) = X \triangle A = (Y \triangle A) \triangle A = Y \triangle (A \triangle A) = Y \triangle \emptyset = Y.$$

Se concluye que f(X) = Y, por lo que f es epiyectiva. (0.5 ptos.)

ii) (1.0 pto.) Calcule f^{-1} .

Solución: Como la función es biyectiva por i), existe la inversa $f^{-1}: \mathcal{P}(E) \longrightarrow \mathcal{P}(E)$ (0.2 ptos.). Para calcularla, sean $X, Y \subseteq A$ tales que f(X) = Y. Notemos que:

$$\begin{array}{lll} f(X) = Y & \iff X \triangle A = Y & \text{def. de } f \\ & \iff (X \triangle A) \triangle A = Y \triangle A & \text{aplicar } \triangle \text{ con } A \\ & \iff X \triangle (A \triangle A) = Y \triangle A & \text{ditributividad de } \triangle \\ & \iff X \triangle \emptyset = Y \triangle A & \text{identidad de } \triangle \\ & \iff X = Y \triangle A & \text{neutro de } \triangle \end{array}$$

Por lo tanto, $f^{-1}(Y) = Y \triangle A$. (0.8 ptos.)

b) Para todo $X \subseteq E$, se define su función indicatriz $I_X : E \to \{0,1\}$ como:

$$I_X(x) = \begin{cases} 0 & \text{si } x \notin X \\ 1 & \text{si } x \in X \end{cases}$$

i) (1.5 ptos.) Sean A, B con $\emptyset \subsetneq B \subsetneq A \subsetneq E$. Demuestre que $I_{A \setminus B} = I_A - I_B$.

Solución: Sea $x \in E$. Para demostrar que $I_{A \setminus B}(x) = I_A(x) - I_B(x)$ vamos a considerar tres casos dependiendo de la pertenencia de x:

- 1) $x \in E \setminus A$. En este caso $I_A(x) = I_{A \setminus B}(x) = I_B(x) = 0$, por lo que $I_{A \setminus B}(x) = I_A(x) I_B(x)$ sigue inmediatamente. (0.5 ptos.).
- 2) $x \in A \setminus B$. En este caso $I_A(x) = 1$, $I_{A \setminus B}(x) = 1$, $I_B(x) = 0$. Luego, $I_{A \setminus B}(x) = 1 = 1 0 = I_A(x) I_B(x)$. (0.5 ptos.).
- 3) $x \in B$. En este caso $I_A(x) = 1$, $I_{A \setminus B}(x) = 0$, $I_B(x) = 1$. Reemplazando estos valores se tiene $I_{A \setminus B}(x) = 0 = 1 1 = I_A(x) I_B(x)$. (0.5 ptos.).
- ii) (1.5 ptos.) Sean $A, Z \subseteq E$ con $A \neq \emptyset, Z \neq \emptyset$. Calcule $I_A(Z)$ en términos de A y Z.

Solución:

- Caso $A \cap Z = \emptyset$. En este caso, $\forall z \in Z$, se tiene que $I_A(z) = 0$. Por lo tanto $I_A(Z) = \{0\}$. (0.5 ptos.).
- Caso $A \cap Z \neq \emptyset$.
 - Caso $Z \subseteq A$. En este caso, $\forall z \in Z$, se tiene que $I_A(z) = 1$. Por lo tanto $I_A(Z) = \{1\}$. (0.5 ptos.).
 - Caso $Z \setminus A \neq \emptyset$. En este caso $I_A(Z) = \{0, 1\}$. En efecto, para cualquier $z \in A \cap Z$, $I_A(z) = 1$. Por otro lado, para cualquier $z \in Z \setminus A$, $I_A(z) = 1$. (0.5 ptos.).
- iii) (1.0 pto.) Sea $A \subseteq E$ con $A \neq \emptyset$. Calcule $I_A^{-1}(\{y\})$ para $y \in \{0,1\}$.

Solución:

- Para y = 0 se tiene que $x \in I_A^{-1}(\{0\}) \iff I_A(x) = 0 \iff x \notin A$. Por lo tanto, $I_A^{-1}(\{0\}) = A^c$. (0.5 ptos.).
- Para y = 1 se tiene que $x \in I_A^{-1}(\{1\}) \iff I_A(x) = 1 \iff x \in A$. Sigue que $I_A^{-1}(\{1\}) = A$. (0.5 ptos.).

Duración: 3 horas.

Nota: Recuerde justificar adecuadamente sus argumentos. Si está usando resultados conocidos, indíquelo claramente.