

Pauta Control recuperativo

P1. Sea $f: \mathbb{N} \to \mathbb{N}$ una función y definimos la relación \mathcal{R} en el conjunto \mathbb{N} como

$$n\mathcal{R}m \iff f(n) < f(m),$$

donde $n, m \in \mathbb{N}$. Demuestre que

- a) (3 puntos) Si f es inyectiva, entonces \mathcal{R} es una relación de orden.
- b) (3 puntos) Probar por inducción que si para todo $n \in \mathbb{N}$, $n \mathcal{R}$ (n+1) entonces para todo $n \in \mathbb{N}$, $f(0) \leq f(n)$.
- **P2.** Considere el conjunto $Fin(\mathbb{N})$, cuyos elementos son los subconjuntos finitos de \mathbb{N} , es decir,

$$Fin(\mathbb{N}) = \{ A \subseteq \mathbb{N} : A \text{ es finito} \}.$$

Sea la función $g: \operatorname{Fin}(\mathbb{N}) \to \mathbb{N}$ definida mediante

$$g(A) = \begin{cases} 0 & \text{si } A = \emptyset, \\ \sum_{k \in A} k & \text{si } A \neq \emptyset. \end{cases}$$

Es decir (para A no vacío), g(A) es la suma de los elementos del conjunto A.

- a) (2 puntos) Evalúe la función g en $\{0,7,9\}$ y en $\{0,1,2,...,500\}$, es decir calcule $g(\{0,7,9\})$ y $g(\{0,1,2,...,500\})$. Luego calcule la imagen del conjunto $\{\{1\},\{1,3,5\}\}$ para la función g, es decir $g(\{\{1\},\{1,3,5\}\})$.
 - **Obs:** $\{0, 1, 2, ..., 500\}$ son todos los naturales desde 0 hasta 500 inclusive ambos.
- b) (2 puntos) Muestre que g es epiyectiva pero no inyectiva.
- c) (2 puntos) Calcule la preimagen del conjunto $\{1,2\}$ por la función g, esto significa que debe determinar el conjunto $g^{-1}(\{1,2\}) \subseteq \operatorname{Fin}(\mathbb{N})$.