CONTROL 6

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique la/s hipótesis.

P1. a) (3 ptos.) Sea $z \in \mathbb{C}$ cualquiera. Demuestre que

$$z^3 + \overline{z}^3 = 0 \land |z| = 1 \iff z^6 = -1.$$

- b) (3 ptos.) Utilice el resultado de la parte a) para encontrar todos los números $z \in \mathbb{C}$ de módulo 1 que satisfacen la ecuación $z^3 + \overline{z}^3 = 0$. Haga además un bosquejo de estos números en el plano complejo.
- **P2.** Sea X un conjunto infinito. Considere el anillo $(\mathcal{P}(X), +, \cdot)$, donde

$$A + B := A\Delta B = (A \cup B) \setminus (A \cap B)$$
 y $A \cdot B := A \cap B$.

Notar que \emptyset es el neutro para + y que $A\Delta A = \emptyset$, para cualquier $A \in \mathcal{P}(X)$.

a) (3 ptos.) Pruebe que (H, +) es subgrupo de $(\mathcal{P}(X), +)$, donde

$$H = \{ A \in \mathcal{P}(X) \mid A \text{ es finito} \}.$$

b) (3 ptos.) Pruebe que todo elemento $A \in \mathcal{P}(X)$ tal que $A \neq \emptyset$ y $A \neq X$, es divisor de cero en el anillo $(\mathcal{P}(X), +, \cdot)$.

TIEMPO: 1h y 30 min

No olvidar anotar su nombre y RUT identificando sus hojas de respuestas.