

Control 3

- **P1.** a) Considere el anillo $(\mathbb{Z}_{15}, +, \cdot)$, donde la suma y la multiplicación son módulo 15.
 - i) (1.0 pto.) Encuentre un elemento invertible de (\mathbb{Z}_{15},\cdot) que sea distinto a su neutro.
 - ii) (1.0 pto.) Encuentre tres elementos distintos x, y, z que son divisores de 0 en $(\mathbb{Z}_{15}, +, \cdot)$.
 - iii) (1.5 ptos.) Se sabe que $(\mathbb{Z}_n, +)$ es un grupo para todo $n \in \mathbb{N}^+$ (no lo pruebe). Encuentre un subgrupo de $(\mathbb{Z}_{15}, +)$ que tenga exactamente 5 elementos. Justifique por qué es un subgrupo.
 - b) Sea (G,*) un grupo donde cada elemento es su propio inverso.
 - i) (1 ptos.) Pruebe que G es abeliano.
 - ii) (1.5 ptos.) Asuma ahora que $|G| \geq 3$. Pruebe que para todo $n \in \mathbb{N}$ se tiene que (G, *) no es isomorfo a $(\mathbb{Z}_n, +)$.
- **P2.** a) Sea $\mathcal{F} = \{f : A \to A : f \text{ es biyectiva}\}$. Se sabe que que (\mathcal{F}, \circ) es un grupo, donde \circ es la composición de funciones. Para cada $a \in A$, un elemento fijo, definimos $\mathcal{F}_a = \{f \in \mathcal{F} : f(a) = a\}$.
 - i) (1.5 ptos.) Pruebe que, para todo $a \in A$, (\mathcal{F}_a, \circ) es subgrupo de (\mathcal{F}, \circ) .
 - ii) (1.5 ptos.) Sean $a, b \in A$, con $a \neq b$. ¿Son $\mathcal{F}_a \cap \mathcal{F}_b$ y $\mathcal{F}_a \cup \mathcal{F}_b$ subgrupos? En caso de que alguno no lo sea, muestre un contraejemplo tomando $A = \{1, 2, 3\}$.
 - b) Sea $z = a + bi \in \mathbb{C}$.
 - i) (1.5 ptos.) Sea $\lambda \in \mathbb{R}$, $\lambda > 0$. Diga qué condiciones tienen que satisfacer los reales a y b para que $|z + \lambda| = |z| + \lambda$.
 - ii) (1.5 ptos.) Pruebe que $|z| 1 \le |z 1| \le |z| + 1$.
- **P3.** Sea $\widetilde{\mathbb{Q}} = \{a + bi, | a, b \in \mathbb{Q}\} \subseteq \mathbb{C}$. El propósito de esta pregunta es determinar todos los posibles homomorfismos de $\widetilde{\mathbb{Q}}$ en \mathbb{C} . Para ello, considere una función no nula $\varphi : \widetilde{\mathbb{Q}} \longrightarrow \mathbb{C}$ tal que:

$$\forall x, y \in \widetilde{\mathbb{Q}}, \quad \varphi(x \cdot y) = \varphi(x)\varphi(y) \, \wedge \, \varphi(x+y) = \varphi(x) + \varphi(y).$$

- a) Pruebe que una función φ con estas características satisface que:
 - i) (1.4 ptos.) $\varphi(0) = 0$ y $\varphi(1) \neq 0$. A partir de esto, muestre que $\varphi(1) = 1$ y $\varphi(-1) = -1$. Indicación: Tenga en cuenta que 0 + 0 = 0 y que existe $x \in \widetilde{\mathbb{Q}}$ tal que $\varphi(x) \neq 0$.
 - ii) (0.8 ptos.) Para todo $n\in\mathbb{N}$ se tiene $\varphi(n)=n$ y que, si además $n\neq 0,$ $\varphi(\frac{1}{n})=\frac{1}{n}$.
 - iii) (0.8 ptos.) Para todo $b \in \mathbb{Z}$, $\varphi(b) = b$. Usando lo anterior, muestre que $\varphi(x) = x$, para todo $x \in \mathbb{Q}$.
- b) Para probar que solo hay dos posibles homomorfismos:
 - i) (2.0 ptos.) Pruebe que $\varphi(i) \in \{i, -i\}$.
 - ii) (1.0 pto.) Determine qué expresiones puede tomar $\varphi(a+bi)$ y concluya.

Duración: 3 horas.

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique las hipótesis.