

Control 3

- **P1.** Sea $f: \mathbb{N} \to \mathbb{N}$ la función definida por f(n) = n/2 si n es par, y f(n) = n-1 si n es impar.
 - a) (2 ptos.) Demuestre que para todo $n \in \mathbb{N}, f(\{0, 1, \dots, n\}) \subseteq \{0, 1, \dots, n\}.$
 - b) (2 ptos.) Para cada número IMPAR $n \in \mathbb{N}$, demuestre que $f^{-1}(\{n\}) = \{2n\}$.
 - c) (2 ptos.) Demuestre que $f^{-1}(\{n \in \mathbb{N} \mid n \text{ es impar }\}) = \{2n \mid n \text{ es un número natural impar}\}.$
- **P2.** Sea $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ y sea \mathcal{R} la relación en $\mathbb{R}^* \times \mathbb{R}^*$ definida por $(a,b)\mathcal{R}(x,y) \iff a \cdot y = b \cdot x$, para cada par de elementos $(a,b),(x,y) \in \mathbb{R}^* \times \mathbb{R}^*$.
 - a) (2 ptos.) Demuestre que \mathcal{R} es una relación de equivalencia.
 - b) (2 ptos.) Demuestre que para cada $(a, b) \in \mathbb{R}^* \times \mathbb{R}^*$,

$$[(a,b)]_{\mathcal{R}} = \{(\lambda a, \lambda b) \colon \lambda \in \mathbb{R}^*\}.$$

c) (2 ptos.) Demuestre que la función $g: \mathbb{R}^* \to (\mathbb{R}^* \times \mathbb{R}^*)/\mathcal{R}$ definida por $g(x) = [(1, x)]_{\mathcal{R}}$ es epiyectiva.

Duración: 1h y 15 minutos.