

Control 2

P1. Sea \mathcal{R} una relación definida sobre $\mathbb{N} \times \mathbb{N}$ de la siguiente forma:

$$(m,n)\mathcal{R}(r,s) \iff m+s=n+r.$$

- a) (2.5 ptos.) Demuestre que \mathcal{R} es una relación de equivalencia.
- b) (0.5 ptos.) Describa los elementos de las clases de equivalencia $[(0,0)]_{\mathcal{R}}$, $[(0,1)]_{\mathcal{R}}$ y $[(1,0)]_{\mathcal{R}}$.
- c) (3.0 ptos.) Demuestre que el conjunto cociente es:

$$(\mathbb{N} \times \mathbb{N})/\mathcal{R} = \{ [(0,n)]_{\mathbb{R}} \mid n \in \mathbb{N} \} \cup \{ [(n,0)]_{\mathbb{R}} \mid n \in \mathbb{N} \setminus \{0\} \}.$$

- **P2.** a) (1.0 pto.) Muestre que $\sum_{k=0}^{523} {523 \choose k} (-2)^k = -1$.
 - b) (1.5 ptos) Sea $n \in \mathbb{N}$. Calcule $\sum_{k=1}^{n} \frac{1}{k(k+3)}$.
 - c) Sea $J = \{[a, b) \subseteq \mathbb{R} : \sqrt{a}, \sqrt{b} \in \mathbb{N}, \sqrt{b} = \sqrt{a} + 1\}.$
 - i) (2.0 ptos.) Demuestre que J es numerable.
 - ii) (1.5 ptos.) Definimos la relación \mathcal{R} en J como

$$[a,b) \mathcal{R}[c,d) \iff c \leqslant a.$$

Demuestre que \mathcal{R} es una relación de orden.

P3. Para $i \in \mathbb{N}$, sea $B_i = \{(i, 1), (i, 2), \dots, (i, i)\}.$

- a) (2.0 ptos.) Muestre que $|B_i|=i$ para cada $i\in\mathbb{N},$ y luego determine $\left|\bigcup_{i=0}^n B_i\right|,$ para $n\in\mathbb{N}.$
- b) (1.0 pto.) Determine si $\bigcup_{i\in\mathbb{N}} B_i$ es igual a $\mathbb{N}\times\mathbb{N}$. Tenga en cuenta que $0\in\mathbb{N}$.
- c) (1.5 ptos.) Determine $|\mathcal{P}(B_i) \times B_4|$ para cada $i \in \mathbb{N}$.
- $d) \ (1.5 \ \mathrm{ptos.})$ Sea $f: B_{10} \rightarrow \{11, 12, 13, \dots, 20\}$ una función inyectiva. ¿Es f biyectiva?

Duración: 3 horas.

Nota: Recuerde justificar adecuadamente sus argumentos. Si está usando resultados conocidos, indíquelo claramente.