

Control 2

- **P1.** Sean $A, B \subseteq E$ conjuntos.
 - a) (1.5 ptos.) Muestre que $(A \cap B) \cup (A\Delta B) = A \cup B$.
 - b) (2.0 ptos.) Muestre que para todo $C, Y, Z \subseteq E$, si $C \cap (Y \cup Z) \neq \emptyset$, entonces $C \cap Y \neq \emptyset$ o $C \cap Z \neq \emptyset$.
 - c) (2.5 ptos.) Suponga que existe $e \in E$ tal que $A \cap B = \{e\}$. Muestre que para todo conjunto $C \subseteq E$, si $C \cap (A \cup B) \neq \emptyset$ y $C \cap (A \Delta B) = \emptyset$, entonces $A \cap B \cap C = \{e\}$.

Nota: Si le es útil, puede usar cualquiera de las partes anteriores (aun si no las contesta).

P2. Sea E un conjunto de referencia y $A \subseteq E$ un subconjunto fijo. Se define la función $F : \mathcal{P}(E) \to \mathcal{P}(E)$ mediante:

$$F(X) = (X\Delta A)^c.$$

a) (3.0 ptos.) Demuestre que para todo $X \in \mathcal{P}(E)$ se tiene que F(F(X)) = X (es decir, $F \circ F$ es la función identidad en $\mathcal{P}(E)$).

Indicación: Probar que si $Y \subseteq E$, entonces $Y \Delta A = Y^c \Delta A^c$ y aplicar con Y = F(X).

b) (3.0 ptos.) Muestre que F es biyectiva.

Duración: 1 hora y 15 minutos.