

Control 3 - Otoño 2025

P1. a) (3.0 pts.) Determine cuáles de las siguientes matrices son diagonalizables:

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & 3 & 0 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \text{y} \qquad C = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 3 \end{pmatrix}.$$

<u>b</u>) (3.0 pts.) Determine todos los valores del parámetro $a \in \mathbb{R}$ que hacen que la siguiente matriz sea diagonalizable:

$$D = \begin{pmatrix} 0 & a & 0 \\ 4a & 0 & 0 \\ 0 & 0 & 1-a \end{pmatrix}.$$

Solución:

a) [1.0 pts. por dar el argumento correcto en cada caso; si no hay justificación no hay puntaje]

Como A es triangular superior, sus valores propios son los que aparecen en la diagonal y las veces que están repetidos son sus multiplicidades algebraicas. En particular, 2 es valor propio de multiplicidad algebraica 3. La multiplicidad geométrica del valor propio 2 es 2 (ya que $W_2 = \langle \{(1,0,0,0)^T, (0,1,-1,0)^T\} \rangle$ tiene dimensión 2). Como la multiplicidad algebraica y geométrica de uno de sus valores propios no coinciden, la matriz A no es diagonalizable.

La matriz B tiene 4 valores propios distintos, es decir, tiene el mismo número de valores propios distintos que la dimensión del espacio \mathbb{R}^4 . Por resultado visto, sigue que B es diagonalizable.

La matriz C es diagonalizable pues es simétrica.

<u>b</u>) El polinomio característico de D es $p(\lambda) = |D - \lambda I|$. Calculando el determinante se obtiene que $p(\lambda) = (\lambda^2 - 4a^2)(1 - a - \lambda)$ [0.8 pts.]. Sigue que los valores propios de D son 2a, -2a y 1 - a [0.2 pts. por cada valor propio].

Si D tiene 3 valores propios distintos, por resultado conocido, la matriz es diagonalizable. Luego, si $a \notin \{-1, 0, 1/3\}$, se tiene que D es diagonalizable [0.4 pts.].

Si a=-1, los valores propios son -2 y 2 de multiplicidades algebráicas 1 y 2, respectivamente. Se verifica que $W_2 = \langle \{(1,-2,0)^T, (0,0,1)^T\} \rangle$ y tiene dimensión 2. Como las multiplicidades algebraica y geométrica coinciden, sigue que D es diagonalizable, si a=-1 [0.4 pts.].

Si a=0, los valores propios son 0 y 1 de multiplicidades algebraicas 2 y 1, respectivamente. Se verifica que $W_0 = \langle \{(1,0,0)^T,(0,1,0)^T\} \rangle$ y tiene dimensión 2. Como las multiplicidades algebraica y geométrica coinciden, sigue que D es diagonalizable, si a=0 [0.4 pts.].

Si a=1/3, los valores propios son 2/3 y -2/3 de multiplicidades algebraicas 2 y 1, respectivamente. Se verifica que $W_{2/3} = \langle \{(1,2,0)^T, (0,0,1)^T\} \rangle$ y tiene dimensión 2. Como las multiplicidades algebraica y geométrica coinciden, sigue que D es diagonalizable, si a=1/3 [0.4 pts.].

Indicaciones para la corrección:

P2. Sea v vector propio de la matriz A asociado al valor propio λ , donde:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{v} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{pmatrix}.$$

- <u>a</u>) (1.5 pts.) Determine λ .
- <u>b</u>) (1.5 pts.) Encuentre \mathcal{B} que contenga a v y que además sea base ortonormal de $W_{\lambda} = Ker(A \lambda I)$ (el espacio de vectores propios asociados a λ).
- c) (1.5 pts.) Encuentre una base ortonormal de Ker(A+I). Es -1 valor propio de A?
- d) (1.5 pts.) Determine $D, P \in \mathbb{R}^{4 \times 4}$ donde D es diagonal, P es invertible y $P^{-1} = P^T$, tales que $A = PDP^T$.

Solución:

- <u>a</u>) Como $Av = v = 1 \cdot v$, por definición de valor y vector propio, sigue que v es vector propio asociado al valor propio $\lambda = 1$ [0.8 pts. por el cálculo de Av y 0.7 pts. por la conclusión].
- b) Observar que:

$$A - I = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & -1 \end{pmatrix}.$$

Notar que la última fila de A-I es igual a la segunda y su penúltima fila igual a -1 veces la primera. Además, sus dos primeras filas forman un conjunto linealmente independiente. Se concluye que el núcleo de la matriz tiene dimensión dos [0.5 pts. por determinar la dimensión de Ker(A-I), explícita o implícitamente].

Para hallar la base pedida basta encontrar un vector v' en Ker(A-I) que sea de norma uno y ortogonal a v [0.5 pts. por encontrar v' en Ker(A-I) ortogonal a v de cualquiera de las dos formas que se indican a continuación].

Primera forma: Por inspección notando que $v' = (1, -1, 1, 1)^T$ cumple lo pedido.

Segunda forma: Resolviendo explícitamente el sistema (A-I)x=0. En este caso, $x_1=x_3$ y $x_2=-x_4$. Además, hay que imponer que $v^Tv'=0$, lo que equivale a $x_1+x_2+x_3-x_4=0$ y que ||v'||=1. De las tres ecuaciones lineales se obtiene $x_3=x_1, 2x_2=-2x_1$ y $2x_4=2x_1$. Entonces, $(x_1,-x_1,x_1,x_1)^T$ es un vector en Ker(A-I) ortogonal a v. Tomando $x_1=1$ se obtiene $v'=(1,-1,1,1)^T$.

Observando que la norma de v es 1, y normalizando v', se concluye que

$$\{(1/2,1/2,1/2,-1/2)^T,(1/2,-1/2,1/2,1/2)^T\}$$

es base ortonormal de Ker(A-I) [0.5 pts. por obtener la base ortonormal pedida].

2

c) Al escalonar la matriz A + I se llega a:

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Sigue que Ker(A+I) tiene dimension 2 [0.5 pts. por determinar la dimensión de Ker(A+I), explícita o implícitamente], por lo que -1 es un valor propio de A [0.5 pts. por responder la pregunta ¿es -1 valor propio de A?], y está generado por los vectores $(1,0,-1,0)^T$ y $(0,1,0,1)^T$. Estos son ortogonales de modo que para $w=(1/\sqrt{2},0,-1/\sqrt{2},0)^T$ y $w'=(0,1/\sqrt{2},0,1/\sqrt{2})^T$, el conjunto $\{w,w'\}$ es una base ortonormal de Ker(A+I) [0.5 pts. por obtener la base ortonormal pedida].

d) Como la matriz A es simétrica sabemos que los espacios de vectores propios W_1 y W_{-1} son ortogonales de modo que $\{v, v', w, w'\}$ es una base ortonormal de \mathbb{R}^4 formada por vectores propios de A. Sabemos que en este caso, $A = PDP^T$, donde

$$P = \begin{pmatrix} 1/2 & 1/2 & 1/\sqrt{2} & 0\\ 1/2 & -1/2 & 0 & 1/\sqrt{2}\\ 1/2 & 1/2 & -1/\sqrt{2} & 0\\ -1/2 & 1/2 & 0 & 1/\sqrt{2} \end{pmatrix} \qquad y \qquad D = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}.$$

[0.5 pts. por argumentar que los espacios propios asociados a valores propios distintos son ortogonales], [0.5 pts. por indicar cómo obtener P desde la base ortonormal o por explicitar P] y [0.5 pts. por indicar cómo obtener P desde los valores propios o por explicitar P].

Indicaciones para la corrección:

- En la parte c), no es necesario escalonar. También podrían argumentar que las columnas de A+I generan un espacio de dimension 2 (es decir, que Im(A) tiene dimensión 2), usar el Teorema Núcleo Imagen para deducir que Ker(A+I) tiene dimensión 4-2=2, y "adivinar" dos vectores linealmente independientes en el núcleo. Dar puntaje completo por este argumento (distribuir puntajes igual como se indica en la pauta).
- **P3.** <u>a)</u> Sea $A \in \mathbb{R}^{3\times 3}$ simétrica. Sean además, $\lambda \in \mathbb{R}$, $u = (0, 1, 1)^T$, $v = (1, 1, 1)^T$ y $w = (0, 1, -1)^T$ tales que $Au = \lambda u$, Av = 3v, y Aw = 0.
 - 1) (1.5 pts.) Pruebe que $\lambda = 3$.
 - 2) (1.5 pts.) Determine $D, P \in \mathbb{R}^{3\times 3}$ donde D es diagonal, P es invertible, $P^{-1} = P^T$, tales que $A = PDP^T$.
 - b) Sea $B \in \mathbb{R}^{n \times n}$ una matriz simétrica y $\{v_1, ..., v_n\}$ una base ortonormal de \mathbb{R}^n formada por vectores propios de B asociados a los valores propios $\lambda_1, ..., \lambda_n$, respectivamente. Sea C la matriz definida por:

$$C = B + v_1 v_1^T,$$

- 1) (1.5 pts.) Pruebe que v_i es vector propio de C, cualquiera sea $i \in [n]$.
- 2) (1.5 pts.) ¿Es C diagonalizable? Justifique.

Solución:

- a) 1) Del enunciado y la definición de valor propio, sigue que λ y 3 son valores propios de A con vectores propios asociados u y v, respectivamente [0.5 pts. por decir que u y v son vectores propios].
 Como A es simétrica, vectores propios asociados a valores propios distintos son ortogonales [0.5 pts. por hacer referencia, implícita o explícitamente, a este resultado]. Pero, u y v no son ortogonales (ya que ⟨u, v⟩ = 2 ≠ 0). Luego, u y v deben ser vectores propios asociados al mismo valor propio. Por lo observado en el párrafo anterior, sigue que λ = 3 [0.5 pts. por concluir y justificar correctamente].
 - 2) De la parte anterior sabemos que u y v son vectores propios asociados al valor propio 3. Del enunciado tenemos que $Aw = 0 \cdot w$. Luego, por definición de valor propio, sigue que w es vector

propio de A asociado al valor propio 0 [0.4 pts. por identificar todos los valores y vectores propios asociados a A].

Para descomponer A en la forma PDP^T necesitamos encontrar una base de vectores propios ortonormales de \mathbb{R}^3 (Teorema de Diagonalizacion de Matrices Simétricas). Aplicamos Gram-Schmidt para encontrar bases ortonormales de $W_3 = \langle \{u, v\} \ y \ W_0 = \langle \{w\} \rangle$ obteniendo que

$$W_3 = \langle \{(0, 1/\sqrt{2}, 1/\sqrt{2})^T, (1, 0, 0)^T\} \rangle,$$

$$W_0 = \langle \{(0, 1/\sqrt{2}, -1/\sqrt{2})^T\} \rangle.$$

[0.6 pts. por aplicar Gram-Schmidt (descontar -0.3 pts. por cada error aritmético)] Luego, basta con tomar:

$$P = \begin{pmatrix} 0 & 1 & 0 \\ 1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \end{pmatrix} \qquad \text{y} \qquad D = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

[0.5 pts. por concluir correctamente]

b) 1) En efecto, si $i \neq 1$,

$$Cv_i = (B + v_1v_1^T)v_i$$
 (por definición de C [0.2 pts])
 $= Bv_i + v_1(v_1^Tv_i)$ (por álgebra matricial [0.2 pts])
 $= Bv_i$ (porque $\{v_1, ..., v_n\}$ es ortogonal, luego $v_1^Tv_i = \langle v_1, v_i \rangle = 0$ si $i \neq 1$ [0.2 pts])
 $= \lambda_i v_i$. (porque v_i es vector propio de B asociado al valor propio λ_i [0.2 pts])

Sigue que v_i es vector propio de C asociado al valor propio λ_i cualquiera sea $i \neq 1$ [0.2 pts. por identificar el valor propio asociado a v_i para $i \neq 1$].

Análogamente,

$$Cv_i = (B + v_1v_1^T)v_1 \qquad \qquad \text{(por definición de C)}$$

$$= Bv_1 + v_1(v_1^Tv_1) \qquad \qquad \text{(por álgebra matricial)}$$

$$= Bv_1 + v_1 \qquad \text{(porque } \{v_1, ..., v_n\} \text{ es ortonormal, luego } v_1^Tv_1 = ||v_1||^2 = 1 \text{ [0.3 pts])}$$

$$= (\lambda_1 + 1)v_1. \qquad \text{(porque } v_1 \text{ es vector propio de B asociado al valor propio λ_1)}$$

Sigue que v_1 es vector propio de C asociado al valor propio $1 + \lambda_1$ [0.2 pts. por identificar el valor propio asociado a v_1].

2) **Primera forma:** Observar que

$$C^T = (B + v_1 v_1^T)^T$$
 (por definición de C)
 $= B^T + (v_1^T v_1)^T$ (por propiedad de la trasposición)
 $= B + v_1^T v_1$ (por propiedad de la trasposición y porque B es simétrica)
 $= C$. (por definición de C)

Luego, C es simétrica [1.0 pts. por justificar que C es simétrica] y por lo tanto diagonalizable (por resultado visto) [0.5 pts. por concluir].

Segunda forma: De la parte anterior $v_1, ..., v_n$ son vectores propios de C [0.5 pts. por observar lo anterior]. Por enunciado, $\{v_1, ..., v_n\}$ es base de \mathbb{R}^n [0.5 pts. por observar lo anterior]. Luego, $\{v_1, ..., v_n\}$ es base de \mathbb{R}^n de vectores propios de C. Por caracterización de matrices diagonalizables, C es diagonalizable [0.5 pts. por invocar la caracterización y concluir].

Indicaciones para la corrección:

lacktriangle En la parte a.2), las columnas de P y D podrían darlas en un orden distinto. Lo único importante es que los valores propios en la diagonal de D estén en el mismo orden que los vectores propios asociados en P.

Tiempo: 3.0 hrs.