

Control 3 - Otoño 2025

P1. a) (3.0 pts.) Determine cuáles de las siguientes matrices son diagonalizables:

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & -1 & 3 & 0 \\ 1 & 2 & 3 & 4 \end{pmatrix} \qquad \text{y} \qquad C = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 3 \end{pmatrix}.$$

<u>b</u>) (3.0 pts.) Determine todos los valores del parámetro $a \in \mathbb{R}$ que hacen que la siguiente matriz sea diagonalizable:

$$D = \begin{pmatrix} 0 & a & 0 \\ 4a & 0 & 0 \\ 0 & 0 & 1-a \end{pmatrix}.$$

P2. Sea v vector propio de la matriz A asociado al valor propio λ , donde:

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix} \qquad \mathbf{y} \qquad \mathbf{v} = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{pmatrix}.$$

- <u>a</u>) (1.5 pts.) Determine λ .
- <u>b</u>) (1.5 pts.) Encuentre \mathcal{B} que contenga a v y que además sea base ortonormal de $W_{\lambda} = Ker(A \lambda I)$ (el espacio de vectores propios asociados a λ).
- c) (1.5 pts.) Encuentre una base ortonormal de Ker(A+I). Es -1 valor propio de A?
- d) (1.5 pts.) Determine $D, P \in \mathbb{R}^{4 \times 4}$ donde D es diagonal, P es invertible y $P^{-1} = P^T$, tales que $A = PDP^T$.

P3. a) Sea $A \in \mathbb{R}^{3\times 3}$ simétrica. Sean además, $\lambda \in \mathbb{R}$, $u = (0, 1, 1)^T$, $v = (1, 1, 1)^T$ y $w = (0, 1, -1)^T$ tales que

$$Au = \lambda u, \qquad Av = 3v, \qquad y \qquad Aw = 0.$$

- 1) (1.5 pts.) Pruebe que $\lambda = 3$.
- 2) (1.5 pts.) Determine $D,P\in\mathbb{R}^{3\times3}$ donde D es diagonal, P es invertible, $P^{-1}=P^T$, tales que $A=PDP^T$.
- b) Sea $B \in \mathbb{R}^{n \times n}$ una matriz simétrica y $\{v_1, ..., v_n\}$ una base ortonormal de \mathbb{R}^n formada por vectores propios de B asociados a los valores propios $\lambda_1, ..., \lambda_n$, respectivamente. Sea C la matriz definida por:

$$C = B + v_1 v_1^T,$$

- 1) (1.5 pts.) Pruebe que v_i es vector propio de C, cualquiera sea $i \in [n]$.
- 2) (1.5 pts.) ¿Es C diagonalizable? Justifique.