MA1101: Introducción al Álgebra

Tarea 7

Se entregan la P1 b, c, e y la P2 c.

- **P1.** Determine si las siguientes relaciones son de órden, de equivalencia, o ninguno de los dos. En el caso que la relación sea de órden determine si es órden total, y si es relación de equivalencia, determine sus conjuntos cuociente:
 - a) En $\mathbb{Z} \times \mathbb{Z}$, se define \mathcal{R} de la siguiente manera: $(a,b) \mathcal{R} (c,d) \iff a \equiv_2 c \wedge b \equiv_3 d$.
 - b) En $\mathbb{N} \times \mathbb{N}$, se define \mathcal{R} de la siguiente manera: $(a,b) \mathcal{R}(c,d) \iff a \leq c \wedge (a=c \Rightarrow b \leq d)$. Es relación de órden porque:
 - Es refleja: $\forall (a,b) \in \mathbb{N}$ se tiene que $(a,b)\mathcal{R}(a,b)$ porque $a \leq a$ y $b \leq b$.
 - Es antisimétrica: $\forall (a,b), (c,d) \in \mathbb{N}$ con $(a,b)\mathcal{R}(c,d)$ y $(c,d)\mathcal{R}(a,b)$ se tiene que $a \leq c \leq a$, lo que implica que a = c. Por lo tanto, también se tiene que $b \leq d \leq b$, lo que implica que b = d. Entonces (a,b) = (c,d).
 - Es transitiva: $\forall (a,b), (c,d), (e,f) \in \mathbb{N}$ con $(a,b)\mathcal{R}(c,d)$ y $(c,d)\mathcal{R}(e,f)$ se tiene que $a \leq c \leq e$. Por lo tanto $a \leq e$, y además, $a = e \Rightarrow a = c = e \Rightarrow b \leq d \land d \leq f \Rightarrow b \leq f$, así que $(a,b)\mathcal{R}(e,f)$.

Es órden total porque dados $(a,b), (c,d) \in \mathbb{N}$, o bien a < c con lo que se tiene que $(a,b)\mathcal{R}(c,d)$, o bien c < a, con lo que se tiene que $(c,d)\mathcal{R}(a,b)$, o bien a = c. En el último caso, si $b \le d$ se tiene $(a,b)\mathcal{R}(c,d)$, y si d < b se tiene $(c,d)\mathcal{R}(a,b)$.

No es relación de equivalencia porque una relación solo puede ser simétrica y antisimétrica a la vez si la relación es la igualdad, lo que no es el caso con \mathcal{R} . (También vale poner un ejemplo de no-simetría.)

c) En $\mathcal{P}(\mathbb{N})$, con $A \neq \emptyset$ un subconjunto fijo de \mathbb{N} , se define \mathcal{R} de la siguiente manera: $X\mathcal{R}Y \Longleftrightarrow A \setminus X = A \setminus Y$.

Es relación de equivalencia porque:

- Es refleja porque para cada $X \subseteq \mathbb{N}$ se tiene que $A \setminus X = A \setminus X$.
- Es simétrica porque para cada $X,Y\subseteq\mathbb{N}$, si $A\setminus X=A\setminus Y$ entonces también $A\setminus Y=A\setminus X$.
- Es transitiva porque para cada $X,Y,Z\subseteq\mathbb{N},$ si $A\setminus X=A\setminus Y$ y $A\setminus Y=A\setminus Z,$ entonces también $A\setminus X=A\setminus Z.$ El conjunto cuociente bajo esta relación es el siguiente: $\{\{B\subseteq\mathbb{N}:A\setminus B=A\setminus C\}:C\in\mathcal{P}(A)\}=\{\{B\subseteq\mathbb{N}:A\cap B=A\cap C\}:C\in\mathcal{P}(A)\}$ (basta nombrar uno de los dos). Esto porque para cada conjunto $B\subseteq\mathbb{N}$ existe un subconjunto C de A tal que $A\setminus B=A\setminus C.$ En particular, este conjunto C es $C=A\cap B$ y tenemos $A\setminus B=A\setminus (A\cap B)=A\setminus C.$

No es relación de órden porque una relación solo puede ser simétrica y antisimétrica a la vez si la relación es la igualdad, lo que no es el caso con \mathcal{R} . (También vale poner un ejemplo de no-antisimetría.)

- d) En $\mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$, se define \mathcal{R} de la siguiente manera: $(X_1, X_2)\mathcal{R}(Y_1, Y_2) \Longleftrightarrow (X_1 \subseteq Y_1 \land Y_2 \subseteq X_2)$.
- e) En un conjunto X con una partición $P = \{P_1, \dots, P_k\}$ de X, tal que $k \ge 2$ y P_1 tenga al menos dos elementos, se define \mathcal{R} de la siguiente manera:

 $x\mathcal{R}y \iff \exists i,j \in \{1,\ldots,k\}, x \in P_i \land y \in P_j \land i \leq j.$

No es simétrica porque para $x \in P_1, y \in P_2$ se tiene xRy pero no se tiene yRx. Por lo tanto no es relación de equivalencia.

No es antisimétrica porque existen $x, x' \in P_1$ con $x \neq x'$ pero se tiene $x\mathcal{R}x'$ y $x'\mathcal{R}x$. Por lo tanto no es relación de órden

- f) En un conjunto X con una partición P de X, se define \mathcal{R} de la siguiente manera: $x\mathcal{R}y \iff \exists A \in P$ tal que $x,y \in A$.
- **P2.** Sea $n \in \mathbb{N}$. Calcule el valor de las siguientes sumatorias:

a)
$$\sum_{k=3}^{n-1} (k-2)(k+1)$$

b)
$$\sum_{k=1}^{2n} (-1)^k k^2$$

Indicación: Puede serle útil separar la suma en términos pares (k = 2i) y en impares (k = 2i - 1), con $i \in \{1, ..., n\}$.

c)
$$\frac{1}{n} \cdot \sum_{k=1}^{n} \frac{n-nk}{k^2+k} \cdot (k+1)!$$

$$Calculemos, us and o factorización de constantes, propiedades del factorial y la propiedad telescópica: \\ \frac{1}{n} \cdot \sum_{k=1}^{n} \frac{n-nk}{k^2+k} \cdot (k+1)! = \frac{1}{n} \cdot n \sum_{k=1}^{n} \frac{1-k}{k(k+1)} \cdot (k+1)! = \sum_{k=1}^{n} (1-k) \frac{(k+1)!}{k(k+1)} = \sum_{k=1}^{n} (1-k) \cdot (k-1)! \\ = \sum_{k=1}^{n} ((k-1)! - k \cdot (k-1)!) = \sum_{k=1}^{n} ((k-1)! - k!) = 0! - n! = 1 - n!$$

(Es posible hacerlo sin la propiedad telescópica, haciendo separación de sumatorias, cambio de índice.)

Para los próximos dos items, sea $r \in \mathbb{R}, r \neq 1$. Se define $S_n = \sum_{k=1}^n k r^k$.

- d) Demuestre que $S_n = r(S_n nr^n) + \sum_{k=0}^{n-1} r^{k+1}$. Indicación: Puede serle útil usar cambio de índice en S_n .
- e) Demuestre que $S_n = \frac{r (n+1)r^{n+1} + nr^{n+2}}{(1-r)^2}$