MA1101: Introducción al Álgebra

Tarea 6

Se entrega P3 y P4.

- **P1.** Sea $f:A\longrightarrow B$ un función. Un conjunto $D\subseteq A$ se dice estable para f si $f^{-1}(f(D))=D$.
 - a) Demuestre que si A_1 y A_2 son conjuntos estables para f, entones $A_1 \cup A_2$ también lo es.
 - b) Demuestre que para todo $D \subseteq A$, el conjunto $E := f^{-1}(f(D))$ es estable para f.
- **P2.** Sea $\mathcal{F} := \{f : \mathbb{Z} \longrightarrow \mathbb{Z} \mid f \text{ función}\}\$ v \mathcal{R} una relación de orden sobre \mathbb{Z} . Demuestre que la relación $\hat{\mathcal{R}}$ definida

$$\forall f, g \in \mathcal{F}, f\tilde{\mathcal{R}}g \Longleftrightarrow \forall x \in \mathbb{Z}, f(x)\mathcal{R}g(x),$$

es una relación de orden sobre \mathcal{F} .

- **P3.** Sea $f: A \longrightarrow B$ una función y consideremos $D_1, D_2 \subseteq f(A)$.
 - a) Pruebe que si $D_1 \cup D_2 = f(A)$, entonces $f^{-1}(D_1) \cup f^{-1}(D_2) = A$. Solución: Notemos que $f^{-1}(D_1) \cup f^{-1}(D_2) \subseteq A$, ya que $D_1, D_2 \subseteq f(A)$. En efecto, la afirmación se basa en que $f^{-1}(D_1) \subseteq A$ y $f^{-1}(D_2) \subseteq A$. Verifiquemos esta afirmación para $D_1 \subseteq f(A)$. Sea $x \in f^{-1}(D_1)$, luego $f(x) \in D_1 \subseteq f(A)$. Esto asegura que $x \in A$. De manera análoga se verifica para $D_2 \subseteq f(A)$. Por lo que nos queda verificar que $A \subseteq f^{-1}(D_1) \cup f^{-1}(D_2)$ para probar la igualdad de conjuntos solicitada. Recordemos que la preimagen verifica $f^{-1}(D_1 \cup D_2) = f^{-1}(D_1) \cup f^{-1}(D_2)$. Luego $f^{-1}(D_1) \cup f^{-1}(D_2) = f^{-1}(f(A))$, ya que $D_1 \cup D_2 = f(A)$. Ahora, usando que siempre tenemos

b) Pruebe que si $D_1 \cap D_2 = \emptyset$, entonces $f(f^{-1}(D_1)) \cap f(f^{-1}(D_2)) = \emptyset$. Solución: Recodemos que para todo $D_1 \subseteq f(A)$ se sigue que $f(f^{-1}(D_1)) = D_1$. De esta forma también vale para $D_2 \subseteq f(A)$, por lo tanto tenemos $f(f^{-1}(D_1)) \cap f(f^{-1}(D_2)) = D_1 \cap D_2$. Así, usando la hipótesis

que $A \subseteq f^{-1}(f(A))$ obtenemos que $A \subseteq f^{-1}(D_1) \cup f^{-1}(D_2)$. Por lo tanto $f^{-1}(D_1) \cup f^{-1}(D_2) = A$. 0.8 pt. 0.5 pt.0.3 pt.obtenemos $f(f^{-1}(D_1)) \cap f(f^{-1}(D_2)) = \emptyset$. 0.2 pt.

- **P4.** Dados $a, b \in \mathbb{N}$ fijos, con $b \ge 1$. Definimos sobre \mathbb{Z} la relación \mathcal{R} por $x\mathcal{R}y \iff b|ax+y(b|divide a|ax+y)$.
 - a) Demuestre que \mathcal{R} es refleja si y sólo si b|(a+1).

Solución:

- (\Longrightarrow) Supongamos que \mathcal{R} es refleja, esto es, para todo $x \in \mathbb{Z}$ tenemos $x\mathcal{R}x$. En este caso se sigue que b|ax+x o equivalentemente b|(a+1)x para todo $x\in\mathbb{Z}$. Luego b divide a a+1, ya que podemos tomar
- (\Leftarrow) Por hipótesis, existe $k \in \mathbb{Z}$ tal que a+1=bk. Multiplicando esta última igualdad por $x \in \mathbb{Z}$ obtenmos ax + x = b(kx). Como $kx \in \mathbb{Z}$, concluimos que b|ax + x y por tanto \mathcal{R} es refleja.
- b) Demuestre que si \mathcal{R} es simétrica, entonces $b|(a^2-1)$.

Solución:

Supongamos que \mathcal{R} es simétrica, es decir, para todo $x,y\in\mathbb{Z}$ si $x\mathcal{R}y$ se sigue que $y\mathcal{R}x$. Lo anterior es equivalente a si b|ax + y entonces b|ay + x. Así, si existe $k_1 \in \mathbb{Z}$ tal que $ax + y = bk_1$ entonces -0.8 pt.existe $k_2 \in \mathbb{Z}$ que verifica $ay + x = bk_2$. Combinando estas dos últimas igualdades podemos escribir $a(bk_1-ax)+x=bk_2$, y agrupando términos obtenemos $(a^2-1)x=b(ak_1-k_2)$ donde $ak_1-k_2\in\mathbb{Z}$ y $x \in \mathbb{Z}$ arbitrario. Esto nos asegura que $b|(a^2-1)$, ya que x es arbitrario.

-0.7 pt.

 $0.5 \, \mathrm{pt.}$

 $0.7 \, \mathrm{pt}.$

0.8 pt.