MA1101: Introducción al Álgebra

Pauta Tarea 5

Se entregan la P1d, la P2b y la P3a.

- P1. Determine inyectividad, epiyectividad y biyectividad de las siguientes funciones:
 - a) $f: \mathbb{N} \setminus \{0\} \to \mathbb{Q}, n \longmapsto \frac{1}{2n}$
 - b) $g: \mathbb{R}^2 \to \mathbb{R}^2$, $(x, y) \longmapsto (x y, x + y)$
 - c) $h: \mathbb{R} \setminus \{2\} \to \mathbb{R}, x \longmapsto \frac{x+2}{x-2}$
 - $d) \ j: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{N}), \ A \longmapsto A \cap \mathbb{N}$

Respuesta:

La función no es inyectiva, porque $\emptyset \neq \{\frac{1}{2}\}$ y $j(\emptyset) = \emptyset = j(\{\frac{1}{2}\})$. (Se puede demostrar usando otros conjuntos, por ejemplo \mathbb{R} y \mathbb{N} .)

Como no es inyectiva, la función tampoco es biyectiva.

La función es epiyectiva, porque dado un subconjunto arbitrario A de \mathbb{N} , podemos considerar el mismo A como subconjunto de \mathbb{R} , y tenemos $j(A) = A \cap A = A$, que es lo que se necesitaba. (En vez de considerar $A \subseteq \mathbb{R}$, se puede usar algo como $A \cup \{\frac{1}{2}\}$, o algo así.)

- e) $k: \mathbb{R} \to \mathcal{P}(\mathbb{Q}), x \longmapsto \{q \in \mathbb{Q} : q < x\}$
- **P2.** Sea A un conjunto con al menos dos elementos.
 - a) Sean $f: A \to B$, $g, h: B \to A$ tales que $g \circ f = id_A$ y $f \circ h = id_B$. Demuestre que f es biyectiva y que $g = h = f^{-1}$.
 - b) Sean $f: A \times A \to A$, $(x,y) \longmapsto f(x,y) = x \text{ y } g: A \to A \times A$, $x \longmapsto g(x) = (x,x)$. Determine si $f \circ g = id_A$ y $g \circ f = id_{A \times A}$.

Respuesta: $f \circ g = \iota a_A \ f$

Se tiene que $f \circ g : A \to A$, y para todo $x \in A$, tenemos $(f \circ g)(x) = f(g(x)) = f((x,x)) = x$. Por lo tanto, $f \circ g = id_A$.

Aunque $g \circ f : A \times A \to A \times A$, no es igual a $id_{A \times A}$, porque si tomamos $x, x' \in A$ con $x \neq x'$ (existen porque A tiene al menos dos elementos), entonces $(g \circ f)(x, x') = g(f(x, x')) = g(x) = (x, x) \neq (x, x')$.

P3. Sea $\mathcal{F} = \{f : [0,1] \longrightarrow [0,1] \mid f \text{ es función}\}\$ y $\mathcal{B} = \{f : [0,1] \longrightarrow [0,1] \mid f \text{ es función biyectiva}\}.$ Se definen además las siguientes funciones:

$$\Psi: \mathcal{F} \longrightarrow [0,1], \ f \longmapsto \Psi(f) = \frac{f(0) + f(1)}{2},$$

$$\mathcal{I}: \mathcal{B} \longrightarrow \mathcal{B}, \ f \longmapsto \mathcal{I}(f) = f^{-1}.$$

a) Estudie inyectividad y epiyectividad de ambas funciones.

Respuesta:

Para $i \in [0,1]$, sea $c_i : [0,1] \longrightarrow [0,1]$ la función constante en i, es decir $c_i(x) = i$ para todo $x \in [0,1]$, y sea $id_{[0,1]}$ la identidad en [0,1]. Notamos que c_i , $id_{[0,1]} \in \mathcal{F}$.

• La función Ψ no es inyectiva, porque $c_{\frac{1}{2}} \neq id_{[0,1]}$ y

$$\Psi(c_{\frac{1}{2}}) = \frac{c_{\frac{1}{2}}(0) + c_{\frac{1}{2}}(1)}{2} = \frac{\frac{1}{2} + \frac{1}{2}}{2} = \frac{1}{2} = \frac{0 + 1}{2} = \frac{id_{[0,1]}(0) + id_{[0,1]}(1)}{2} = \Psi(id_{[0,1])}).$$

■ La función Ψ es epiyectiva, porque dado $x \in [0,1]$ arbitrario, podemos considerar c_x , y tenemos $\Psi(c_x) = \frac{c_x(0) + c_x(1)}{2} = \frac{x+x}{2} = x$, que es lo que se necesitaba.

- La función \mathcal{I} es inyectiva. Para ver esto, consideramos $f, g \in \mathcal{B}$ con $\mathcal{I}(f) = \mathcal{I}(g)$. Por la definición de \mathcal{I} , esto significa que $f^{-1} = g^{-1}$. Como f y g son biyectivas, sus inversas también lo son, y tienen inversas $(f^{-1})^{-1}$, $(g^{-1})^{-1}$. Como $f^{-1} = g^{-1}$, y como sabemos que para cada función biyectiva h se tiene que $(h^{-1})^{-1} = h$, se concluye que $f = (f^{-1})^{-1} = (g^{-1})^{-1} = g$, que es lo que había que ver para ver que \mathcal{I} es inyectiva.
- La función \mathcal{I} es epiyectiva, porque dada una función $g \in \mathcal{B}$, consideramos g^{-1} , y notamos que $\mathcal{I}(g^{-1}) = (g^{-1})^{-1} = g$, que es lo que teníamos que ver.
- b) Demuestre que $\Psi \circ \mathcal{I}$ no es epiyectiva.