MA1101: Introducción al Álgebra

Tarea 4

- **P1.** Consideremos los conjuntos $C_i \subset \mathbb{Z}$, con $i \in \{0, 1, 2\}$, definidos por $C_i := \{n \in \mathbb{Z} \mid n = 3k + i \text{ para algún } k \in \mathbb{Z}\}$. Pruebe que $\mathcal{C} := \{C_0, C_1, C_2\}$ define una partición de \mathbb{Z} . (Se puede usar la ayuda de la **P2** de la tarea 1).
- **P2.** Sean $A, B \subseteq E$ conjuntos arbitrarios.
 - a) Verifique que $\emptyset \notin \mathcal{P}(A) \setminus \mathcal{P}(B)$.
 - b) Muestre que $\mathcal{P}(A \setminus B) \subseteq (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}.$
 - c) Hallar A y B para los cuales $\mathcal{P}(A \setminus B) \neq (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}$.
 - d) Pruebe que $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B) \iff A \subseteq B \vee B \subseteq A$. Solución:
 - (\Rightarrow) De la igualdad se sigue que $A \cup B \subseteq A$ o $A \cup B \subseteq B$, ya que $A \cup B \in \mathcal{P}(A)$ o $A \cup B \in \mathcal{P}(B)$. O.8 pts En el primer caso tenemos $B \subseteq A$, y en el segundo $A \subseteq B$. Por lo que se verifica la implicancia.
 - (\Leftarrow) Notando que siempre se verifica la contención $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$, nos basta probar en cada caso que $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$ para asegurar la igualdad. Supongamos que $A \subseteq B$. En este caso se sigue que $B = A \cup B$ y por tanto $\mathcal{P}(A \cup B) = \mathcal{P}(B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$. Esto último asegura la igualdad buscada. En el caso que $B \subseteq A$, procedemos de manera análoga. Primero notamos que $\mathcal{P}(A \cup B) = \mathcal{P}(A)$ pues $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$. En cualquier caso obtenemos $\mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$, por lo tanto $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

P3.

a) Pruebe que la colección $C := \{R_i \mid i \in \mathbb{N}\}$, con $R_i := \{(x,y) \in \mathbb{N}^2 \mid x+y=i\}$, define una partición de \mathbb{N}^2 . Solución:

Primero, verifiquemos que $R_i \neq \emptyset$ para todo $i \in \mathbb{N}$. En efecto, notemos que para cualquier $i \in \mathbb{N}$ se tiene i + 0 = i y por tanto $(i, 0) \in R_i$.

Veamos ahora que para todo $R_i, R_j \in \mathcal{C}$ la condición $i \neq j$ implica que $R_i \cap R_j = \emptyset$. Para esto, supongamos que $R_i \cap R_j \neq \emptyset$, es decir, existe $(x_0, y_0) \in R_i \cap R_j$. Luego $x_0 + y_0 = i$ y $x_0 + y_0 = j$ implican i = j total pts contradiciendo que $i \neq j$.

Por último, nos queda ver que $\bigcup_{i\in\mathbb{N}}R_i=\mathbb{N}^2$. Sea $(x_0,y_0)\in\bigcup_{i\in\mathbb{N}}R_i$. Esto significa que existe $i_0\in\mathbb{N}$ tal que $\underline{(x_0,y_0)}\in R_{i_0}$. Luego, $\underline{(x_0,y_0)}\in\mathbb{N}^2$. Así, tenemos $\underline{\bigcup_{i\in\mathbb{N}}R_i\subseteq\mathbb{N}^2}$.

Por otro lado, consideremos $(\tilde{x},\tilde{y})\in\mathbb{N}^2$ y definamos $j_0:=\tilde{x}+\tilde{y}\in\mathbb{N}$. Notemos que $(\tilde{x},\tilde{y})\in R_{j_0}$ y por **0.5 pts**

b) Pruebe que el conjunto de las circunferencias de la forma $C_r := \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = r\}$, con $r \geq 0$, define una partición de \mathbb{R}^2 .

tanto $(\tilde{x}, \tilde{y}) \in \bigcup_{i \in \mathbb{N}} R_i$. En resumen $\bigcup_{i \in \mathbb{N}} R_i = \mathbb{N}^2$, y así \mathcal{C} define una partición de \mathcal{N}^2 .