1.5 pt.

1.5 pt.

1.5 pt.

2 pt.

MA1101: Introducción al Álgebra

Tarea 2

Se entrega el primer ítem de cada pregunta.

- **P1.** Sea E un conjunto de referencia, p una proposición lógica y Q(x) una función proposicional.
 - a) Definamos la proposición r como $(\forall x \in E)(p \Rightarrow Q(x))$. Determine el valor de verdad de la proposición p, sabiendo que r es falsa.

solución: Usando la caracterización del implica, podemos reescribir la proposición r como $(\forall x \in E)(\overline{p} \lor 1.5)$

Q(x)). Ahora, la negación de r es equivalente a $(\exists x \in E)(\overline{p} \vee Q(x))$. Luego, las Leyes de De Morgan nos

aseguran que la negación de r es equivalente a $(\exists x \in E)(p \land \overline{Q(x)})$. Nos dicen que r es falsa, es decir, \overline{r} es verdadera. Por lo desarrollado anteriormente tenemos que $(\exists x \in E)(p \land \overline{Q(x)})$ es verdadera. Esto es, existe $x \in E$ tal que $p \land \overline{Q(x)}$ es verdadera. Recordando que la conjunción es verdadera cuando ambas proposiciones lo son, podemos concluir que la proposición p es

P2. Pruebe mediante inducción sobre $n \in \mathbb{N}$:

a) $n! \geq 2^n$, para $n \geq 4$.

verdadera.

Solución: Analicemos el caso base dado por $\underline{n_0 = 4}$. Notemos que 4! = 24 y $2^4 = 16$, por lo que la designaldad se verifica para el caso base.

Supongamos ahora que la desigualdad es cierta para $n \in \mathbb{N}$, es decir, $n! \geq 2^n$. Para concluir mediante inducción, debemos probar que $(n+1)! \geq 2^{n+1}$. En efecto, sabemos que (n+1)! = (n+1)n!. Luego, por la hipótesis de inducción sobre $n \in \mathbb{N}$ se sigue que

$$(n+1)! \ge (n+1)2^n$$
. (1) 1.5 pt

Ahora, como $n \ge 4$, podemos ver que $n+1 \ge 2$. Combinando esto último con la desigualdad (1) obtenemos

$$(n+1)! \ge 2^{n+1}$$
.

Como querámos probar, concluyendo la solución.

P3. Consideremos A y B conjuntos no vacíos, y sean p(x) y q(x) funciones proposicionales. Supongamos que las siguientes proposiciones son verdadersas

$$R: (\exists x \in A)(\exists x' \in A) \ (p(x) \Leftrightarrow \overline{p(x')})$$

$$S: (\forall x \in A)(\exists y \in B) \ (p(x) \Rightarrow q(y))$$

$$T: (\forall x \in A)(\exists y \in B) \ (q(y) \Rightarrow p(x))$$

Pruebe que

a) $(\exists x \in A) \ p(x) \land (\exists x \in A) \ p(x)$.

Solución: La proposición R nos asegura que existe un x_0 y x_1 en A tales que $p(x_0) \Leftrightarrow \overline{p(x_1)}$. Pueden currir dos casos: que $p(x_0)$ sea verdadera o falsa.

- En el caso que $p(x_0)$ sea verdadera, tomando $x = x_0$, se sigue que $(\exists x \in A)p(x)$ y tomando $x = x_1$ obtenemos $(\exists x \in A)\overline{p(x)}$.
- En el caso $p(x_0)$ sea falsa, entonces $p(x_1)$ es verdadera. Por lo que tomando $x = x_1$ tenemos $(\exists x \in A)p(x)$, y tomando $x = x_0$ se sigue $(\exists x \in A)\overline{p(x)}$.

En cualquier caso se verifica la proposición pedida.