MA1101: Introducción al Álgebra

Tarea 12

P1. Sean $w_0, w_1, \dots, w_{n-1} \in \mathbb{C}$ las raíces n-ésimas de la unidad.

a) Pruebe que $\sum_{j=0}^{n-1} (w_j)^k = 0$ para todo $k \in \{1, 2, ..., n-1\}$.

Solución: Sabemos que las raíces n-ésimas de la unidad están dadas por $w_j = e^{i2\pi j/n}$ para $j \in \{0,1,\ldots,n-1\}$. Notemos que $w_j = (e^{i2\pi/n})^j = w_1^j$. Luego,

$$\sum_{j=1}^{n-1} (w_j)^k = \sum_{j=1}^{n-1} (w_1^j)^k = \sum_{j=1}^{n-1} (w_1^k)^j.$$

Ya que esta última sumatoria es del tipo geométrica, y usando que $(w_1^k)^n = 1$ y que $w_1^k \neq 1$ para todo $k \in \{1, 2, \dots, n-1\}$, obtenemos

$$\sum_{j=1}^{n-1} (w_j)^k = \frac{1 - (w_1^k)^n}{1 - w_1^k} = 0,$$

para todo $k \in \{1, 2, \dots, n-1\}.$

b) Definiendo el polinomio $P(x) = \sum_{k=0}^m a_k x^k \in \mathbb{C}[x]$, para $m \in \{1, \dots, n-1\}$. Pruebe que

$$\frac{1}{n}\sum_{j=0}^{n-1}P(w_j) = P(0).$$

(Puede usar el ítem anterior).

Solución: Notemos que al evaluar el polinomio P en w_i obtenemos

$$\sum_{j=0}^{n-1} P(w_j) = \sum_{j=0}^{n-1} \sum_{k=0}^{m} a_k(w_j)^k.$$

Intercambiando el orden de las sumatorias y usando que $a_k \in \mathbb{C}$ no dependen de j se sigue que

$$\sum_{j=0}^{n-1} P(w_j) = \sum_{k=0}^{m} a_k \sum_{j=0}^{n-1} (w_j)^k.$$
 (1)

El ítem anterior nos dice que para $k \in \{1, 2, ..., n-1\}$ la suma $\sum_{j=0}^{n-1} (w_j)^k$ es cero, por lo que sólo sobrevive el término k=0 en (1). Así,

$$\sum_{j=0}^{n-1} P(w_j) = a_0 \left(\sum_{j=0}^{n-1} (w_j)^0 \right) = a_0 n.$$
 (2)

Como $P(0) = a_0$, el resultado se sigue de (2).

P2. Consideremos el anillo $A[x] \subseteq \mathbb{R}[x]$ (no es necesario probar que es anillo), para la suma y producto usual de polinomios, definido por $A[x] := \{P(x) \in \mathbb{R}[x] \mid P(1) = 0\}$. Pruebe que $P \in A[x]$ si y sólo si existe $Q \in \mathbb{R}[x]$ tal que P(x) = (x-1)Q(x).

Solución:

 (\Longrightarrow) Si $P \in A[x]$, entonces x=1 es raíz de P. Luego x-1 divide a P, es decir, existe $Q \in \mathbb{R}[x]$ tal que P(x)=(x-1)Q(x). Esto prueba la implicancia.

 (\Leftarrow) Si tenemos P(x) = (x-1)Q(x) con $Q \in \mathbb{R}[x]$, entonces se sigue que P(1) = 0 y por tanto $P \in A[x]$.

- **P3.** Calcular las constantes $\alpha, \beta \in \mathbb{C}$, tales que al dividir el polinomio $P(x) = \alpha x^4 x^3 + \beta x^2 + 10x 2\alpha$ por Q(x) = x 1, el resto es R(x) = 3 y el cuociente es un polinomio G(x) que verifica G(2) = 21. (Corresponde a materia de la semana 14)
- **P4.** Sea $P \in \mathbb{C}[x]$ dado por $P(x) := a_0 + a_1 x + \cdots + a_n x^n$. Definamos $Q \in \mathbb{C}[x]$ por Q(x) := P(ix). Demuestre que P = Q, si y solo si, para cada k que no es multiplo de 4 se tiene que $a_k = 0$.