MA1101: Introducción al Álgebra

Tarea 10

Se entrega P1 b), P2 b) y P3 c).

- **P1.** Sea (G, *) un grupo no necesariamente abeliano, con neutro e_G . Para $a \in G$, se define la función $f_a : G \longrightarrow G$ por $f_a(x) := a * x * a^{-1}$.
 - a) Verifique que $f_e = id_G$, y que para todo $a, b \in G$ se tiene $f_{a*b} = f_a \circ f_b$, donde \circ representa la composición de funciones
 - b) Demuestre que para todo $a \in G$, la función f_a define un isomorfismo de (G,*) en (G,*). Verifique que $f_a^{-1} := f_{a^{-1}}$.

Solución:

- Notemos que f_a define un endomormismo en (G,*). Como $a^{-1}*a = e_G$ para todo $a \in G$, podemos escribir para $x,y \in G$, luego de usar la asociatividad de *, la siguiente igualdad $a*x*y*a^{-1} = (a*x)*e_G*(y*a^{-1}) = (a*x*a^{-1})*(a*y*a^{-1})$. Lo anterior nos dice que $f_a(x*y) = f_a(x)*f_a(y)$, y por tanto f_a es endomorfismo.
- Veamos ahora que f_a es inyectiva. Para esto, consideremos $x, y \in G$ tales que $f_a(x) = f_a(y)$. De la definición de f_a , se tiene que x e y verifican $a * x * a^{-1} = a * y * a^{-1}$. Como los elementos $a, a^{-1} \in G$ son cancelables obtenemos x = y. Así, f_a es inyectiva.
- Por último veamos que f_a es sobreyectiva. Sea $y \in G$ y definamos $x := a^{-1} * y * a$. Luego, $x \in G$ verifica $f_a(x) = a * (a^{-1} * y * a) * a^{-1}$. Asociando y usando que $a * a^{-1} = a^{-1} * a = e_G$ se sigue que f(x) = y. Es decir, f_a es epiyectiva.
- Los puntos anteriores nos aseguran que f_a posee inversa, y nos piden verificar que dicha inversa está dada por $f_{a^{-1}}$. En efecto, para $a \in G$ tenemos que, según el ítem a), $f_a \circ f_{a^{-1}} = f_{e_G} = id_G = f_{a^{-1}} \circ f_a$. Por lo tanto, la inversa de f_a es $f_{a^{-1}}$.
- c) Demuestre que el conjunto $H(G) := \{a \in G \mid f_a = id_G\}$ es un subgrupo de (G, *).
- **P2.** Sea (G,*) un grupo abeliano y $(H_1,*)$ y $(H_2,*)$ dos subgrupos de (G,*).
 - a) Pruebe que el conjunto $L := \{h_1 * h_2 \mid h_1 \in H_1 \text{ y } h_2 \in H_2\}$ define un subgrupo de (G,*).
 - b) Pruebe que si $H_1 \cap H_2 = \{e_G\}$, donde e_G es el neutro de G, entonces $f(h_1,h_2) := h_1 * h_2$ define un isomorfismo entre $(H_1 \times H_2, \Delta)$ y (L,*), donde la operación Δ está dada por $(h_1, k_1)\Delta(h_2, k_2) := (h_1 * h_2, k_1 * k_2)$.

Solución:

• Veamos que f define un morfismo. Sean $(h_1, k_1), (h_2, k_2) \in H_1 \times H_2$. Luego,

$$f((h_1, k_1)\Delta(h_2, k_2)) = f(h_1 * h_2, k_1 * k_2)$$

= $(h_1 * h_2) * (k_1 * k_2).$

Como (G, *) es grupo abeliano, al asociar y conmutar adecuadamente, obtenemos $f((h_1, k_1)\Delta(h_2, k_2)) = (h_1 * k_1) * (h_2 * k_2) = f(h_{1,k_1}) * f(h_2, k_2)$. Por lo tanto f es morfismo.

- Veamos ahora que f es inyectiva. Sean $(h_1, k_1), (h_2, k_2) \in H_1 \times H_2$ tales que $f(h_1, k_1) = f(h_2, k_2)$. Es decir, $h_1 * k_1 = h_2 * k_2$. Esto nos dice que, al operar h_2^{-1} por la izquierda y por k_1^{-1} por la derecha, y luego asociar, obtenemos $h_2^{-1} * h_1 = k_2 * k_1^{-1} \in H_1 \cap H_2$. Ya que $H_1 \cap H_2 = \{e_G\}$, se sigue que $h_2^{-1} * h_1 = e_G$ y $k_2 * k_1^{-1} = e_G$. Así, $h_1 = h_2$ y $k_1 = k_2$. Concluyendo que f es inyectiva.
- Para la epiyectividad, notemos que todo elemento de $y \in L$ es de la forma $y = h_1 * h_2$ con $h_1 \in H_1$ y $h_2 \in H_2$. Luego, para $x := (h_1, h_2) \in H_1 \times H_2$ se verifica $f(x) = h_1 * h_2 = y$. Por lo tanto f es epiyectiva.

En resumen f define un isomorfismo entre $(H_1 \times H_2, \Delta)$ y (L, *).

P3. Si $(A, +, \cdot)$ es un anillo tal que $x \cdot x = x$ para todo $x \in A$. Pruebe que

- a) x = -x para todo $x \in A$.
- b) $(A, +, \cdot)$ es un anillo conmutativo.
- c) $(x \cdot y) \cdot (x + y) = 0$ para todo $x, y \in A$.

Solución:

Denotemos $z:=(x\cdot y)\cdot (x+y)$. Sabemos que la operación · distribuye sobre + ya que estamos sobre un anillo. Así, $z=(x\cdot y)\cdot x+(x\cdot y)\cdot y$. Ahora, usando la asociatividad y que según el ítem b) el anillo es conmutativo, podemos escribir $z=(x\cdot x)\cdot y+x\cdot (y\cdot y)$. Por hípotesis se sigue que $z=x\cdot y+x\cdot y$. Usando el ítem a) tenemos que $x\cdot y=-(x\cdot y)$. Así, concluimos que z=0.

- **P4.** Sea $(A, +, \cdot)$ un anillo, diremos que un subconjunto $I \subseteq A$ es un ideal de A si verifica que (I, +) es un subgrupo de (A, +) y además para todo $a \in A$ y $b \in I$ se tiene que $a \cdot b \in I$ y $b \cdot a \in I$. Supongamos que A es un anillo con unidad $1 \in A$ y que $I \subseteq A$ es un ideal de A.
 - a) Pruebe que si $1 \in I$, entonces I = A.
 - b) Pruebe que si existe $x \in I$ invertible para \cdot en A, entonces I = A.