MA1101: Introducción al Álgebra

Pauta Tarea 1

- P1. Determine si las siguientes afirmaciones son tautologías, sin usar tablas de verdad.
 - a) $(p \Longrightarrow \overline{p \vee \overline{q}}) \Leftrightarrow \overline{p}$ Solución usando el método simbólico: $(p \Longrightarrow \overline{p \vee \overline{q}}) \Leftrightarrow (p \Longrightarrow (\overline{p} \wedge q)) \Leftrightarrow (\overline{p} \vee (\overline{p} \wedge q) \Leftrightarrow \overline{p}$ dónde se usaron la ley de Morgan, caracterización de la implicancia, absorbción. Una otra posibilidad es usar una demostración exploratória.
 - b) $(p \implies q) \Leftrightarrow [(\overline{q} \land p) \lor (q \implies p)]$
 - $c) \ [(p \implies q) \land (r \implies s)] \implies [(p \land r) \implies (q \land s)]$
- P2. Demuestre las siguientes afirmaciones, indicándo cuál método de demostración se usó:
 - a) Todo entero al cuadrado tiene la forma 3k o 3k+1, con $k \in \mathbb{N}$. (Puede usar, sin demostrar, que todo entero se escribe de la forma 3q+r, con q entero y $r \in \{0,1,2\}$.)
 - b) Para a entero, si 3a² + 1 es par, entonces a es impar. Solución: Usaremos la contrarrecíproca. Entonces tenemos que mostrar que si a no es impar, entonces 3a² + 1 no es par. En otras palabras, la meta es probar que si a es par, entonces 3a² + 1 es impar. Notamos que si a es par, entonces a² es par, y también 3a² es par, y por lo tanto 3a² + 1 es impar, que es lo que queríamos mostrar. Es también posible mostrar lo pedido usando una reducción al absurdo, o una demostración directa.
 - c) Sea $a \neq 0$ un número racional y b un número irracional (no racional), donde un número racional es aquel que se puede escribir de la forma $\frac{m}{n}$, con m, n enteros, $n \neq 0$. Demuestre que a + b es irracional. Solución: Usaremos la contradicción o reducción al absurdo. Para esto, asumimos que $a \neq 0$ y a+b son racionales y b es irracional. Siendo racionales, $a = \frac{n}{m}$ y $a+b = \frac{n'}{m'}$ donde n, n', m, m' son enteros con $m, m' \neq 0$. Notamos que $b = (a+b) a = \frac{n'}{m'} \frac{n}{m} = \frac{n'm+nm'}{mm'}$. Es decir, tomando n'' := n'm + nm' y m'' := mm', el irracional b se puede escribir como $b = \frac{n''}{m''}$ con n'', m'' enteros y $m'' \neq 0$, lo que es una contradicción.
- **P3.** Sea F el conjunto de personas que se encuentra esperando en una fila. Para dos personas x, y en F, se define la función proposicional

 $\phi(x,y)$ = "La persona x está más adelante que y en la fila."

- a) Determine en qué lugar de la fila se encuentran p,q en los siguientes casos, explicando su respuesta:
 - 1) $(\forall x \in F)(\phi(p, x) \lor x = p)$.
 - 2) $(\forall x \in F)(\phi(x,q) \lor x = q)$.

Es importante la parte ... $\forall x = p \text{ en } 1$), $\forall x ... \forall x = q \text{ en } 2$)?

b) De forma similar a los casos de a), escriba la situación "hay al menos dos personas en la fila delante de p".