Introducción al Álgebra MA1101

Control Recuperativo 3

- **P1.** Se define $C = \{S \subseteq \mathbb{N} : |S| < |\mathbb{N}|\}$, y se definen dos subconjuntos de C: el conjunto C_1 contiene a todos los $S \in C$ con |S| impar, y el conjunto C_2 contiene a todos los $S \in C$ con |S| par. También se define $C_0 = \{S \in C : 0 \in S\}$.
 - (a) (2 ptos) Muestre que $|\mathcal{C}_1 \setminus \mathcal{C}_0| = |\mathcal{C}_2 \cap \mathcal{C}_0|$.
 - (b) (2 ptos) Muestre que $|\mathcal{C}_2 \cap \mathcal{C}_0| = |\mathcal{C}_2 \setminus \mathcal{C}_0|$.
 - (c) (2 ptos.) También se tiene $|\mathcal{C}_1 \cap \mathcal{C}_0| = |\mathcal{C}_1 \setminus \mathcal{C}_0| = |\mathbb{N}|$ (no se pide probar esto). Usando estas igualdades y usando (i) e (ii), muestre que $|\mathcal{C}| < |\mathcal{P}(\mathbb{N})|$.

Indicación:

- (a) y (b): Notar que por ejemplo, $\{1,4,11\} \in \mathcal{C}_1 \setminus \mathcal{C}_0$, $\{0\} \cup \{1,4,11\} = \{0,1,4,11\} \in \mathcal{C}_2 \cap \mathcal{C}_0$ y $\{0+1,1+1,4+1,11+1\} = \{1,2,5,12\} \in \mathcal{C}_2 \setminus \mathcal{C}_0$.
- (c): Recordar que, para todo par de conjuntos A, B se tiene que $B = (B \setminus A) \cup (B \cap A)$.

Solución:

(a):

La función $f: \mathcal{C}_1 \setminus \mathcal{C}_0 \to \mathcal{C}_2 \cap \mathcal{C}_0$ definida por $f(S) = S \cup \{0\}$ es inyectiva porque para todo $S, S' \in \mathcal{C}_1 \setminus \mathcal{C}_0$ se tiene que $f(S) = f(S') \Rightarrow S \cup \{0\} = S' \cup \{0\} \Rightarrow S = S'$, donde se usa que ninguno de S, S' contiene a 0 (1 pto). Es epiyectiva porque dado un conjunto $T \in \mathcal{C}_2 \cap \mathcal{C}_0$, sabemos que $0 \in T$, por lo que $T \setminus \{0\}$ tiene cardinal impar y es elemento de $\mathcal{C}_1 \setminus \mathcal{C}_0$, y tenemos que $f(T \setminus \{0\}) = T$ (1 pto). (b):

Consideramos la función $f: \mathcal{C}_2 \cap \mathcal{C}_0 \to \mathcal{C}_2 \setminus \mathcal{C}_0$ dada por $f(S) = \{i+1 : i \in S\}$. Efectivamente esto es una función de $\mathcal{C}_2 \cap \mathcal{C}_0$ a $\mathcal{C}_2 \setminus \mathcal{C}_0$ porque si |S| es par, entonces |f(S)| es par, y además, $0 \notin f(S)$ (1 pto). Esta función es biyectiva porque $g: \mathcal{C}_2 \setminus \mathcal{C}_0 \to \mathcal{C}_2 \cap \mathcal{C}_0$ dada por $g(T) = \{i-1 : i \in T\}$ cumple con $g \circ f = id_{\mathcal{C}_2 \cap \mathcal{C}_0}$ y $f \circ g = id_{\mathcal{C}_2 \setminus \mathcal{C}_0}$ (1 pto). (c):

Notamos que los conjuntos $C_1 \cap C_0$, $C_1 \setminus C_0$, $C_2 \cap C_0$, $C_2 \setminus C_0$ particionan a C (0.5 pto). Entonces, por (i) e (ii), g por las igualdades enunciadas en (iii), se tiene que G es union de cuatro conjuntos de cardinalidad $|\mathbb{N}|$, por lo que también tiene cardinal $|\mathbb{N}|$ (1 pto). Sabemos que $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$, por lo que se tiene lo pedido (0.5 pto).

- **P2.** Consideramos $(\mathbb{Z}_8 \times \mathbb{Z}_5, +)$, el producto cartesiano de los grupos $(\mathbb{Z}_8, +_8)$ y $(\mathbb{Z}_5, +_5)$.
 - (a) Sea $f: \mathbb{Z}_{40} \to \mathbb{Z}_8 \times \mathbb{Z}_5$ dada por $f([x]_{40}) = ([x]_8, [x]_5)$. Muestre que f es un isomorfismo, es decir, muestre que
 - (i) (1 pto) f es un homomorfismo.
 - (ii) (3 ptos) f es biyectiva.
 - (b) Considera el subgrupo $H = \{([i]_8, [0]_5) : i = 0, 2, 4, 6\}.$
 - (i) (1 pto) Determine a + H, la traslación a la izquierda de H por a, donde $a = ([3]_8, [3]_5)$.
 - (ii) (1 pto) Sea $\mathcal{T} = \{a + H : a \in \mathbb{Z}_8 \times \mathbb{Z}_5\}$. Determine $|\mathcal{T}|$.

Solución:

a(i):

f es homomorfismo porque para todo $[x]_{40}, [y]_{40} \in \mathbb{Z}_{40}$ se tiene que $f([x]_{40} +_{40} [y]_{40}) = f([x+y]_{40}) = ([x+y]_8, [x+y]_5) = ([x]_8 + [y]_8, [x]_5 + [y]_5) = f([x]_{40}) + f([y]_{40})$ (1 pto). a(ii):

Para mostrar la biyectividad de f es suficiente ver que es inyectiva porque sus conjuntos de partida y llegada son finitos (1 pto). Para ver que es inyectiva consideramos $[x]_{40}, [y]_{40} \in \mathbb{Z}_{40}$ arbitrarios, se tiene que $f([x]_{40}) = f([y]_{40}) \Rightarrow ([x]_8, [x]_5) = ([y]_8, [y]_5) \Rightarrow [x]_8 = [y]_8 \wedge [x]_5 = [y]_5$ (0.5 pto), lo que implica que existen $k_1, k_2 \in \mathbb{Z}$ tales que $x - y = 8k_1$ y $x - y = 5k_2$ (0.5 pto). Entonces, $8k_1 = 5k_2$, y como 5 no divide a 8, se tiene que $5|k_1$, es decir existe un $k_3 \in \mathbb{Z}$ tal que $k_1 = 5k_3$ (0.5 pto). Deducimos que $x - y = 8k_1 = 40k_3$ por lo que $[x]_{40} = [y]_{40}$, que es lo que se quería ver (0.5 pto). b(i):

Es $\{([i]_8, [3]_5) : i = 1, 3, 5, 7\}$ (1 pto). b(ii):

Sabemos que el conjunto de las traslaciones particiona al grupo, que cada traslación tiene el mismo cardinal como H, y que |H|=4. Como $|\mathbb{Z}_8\times\mathbb{Z}_5|=40$ sigue que el número de traslaciones es 10 (1 pto).

P3. Sea $(A, +, \cdot)$ un anillo.

a) (2 ptos) Muestre que A es conmutativo si y solamente si

para todo
$$a, b \in A$$
 se tiene que $(a+b)^2 = a^2 + 2 \cdot ab + b^2$. (1)

b) (1 pto) Muestre que si A es conmutativo y tiene la propiedad que todo $a \in A$ es cancelable, entoncas A es un dominio de integridad.

(Nota: Esto es una proposición del apunte, en el case que recuerde la demostración, la puede repetir.)

c) (3 ptos) Sea $n \in \mathbb{N}$, y sea $f : A \to \mathbb{Z}_n$ un isomorfismo de anillos. Sea 1_A la unidad de A. Muestre que para cada elemento $a \in A$ existe un $k \in \mathbb{N}$ tal que $a = k \cdot 1_A$.

Indicación para a) y c): Recordar que para todo anillo $(X, +, \cdot)$, y todo $x \in X$ se definió lo siguiente: $1 \cdot x = x$ y $k \cdot x = x + (k-1) \cdot x$ para $k \in \mathbb{N}^*$ (en particular $2 \cdot x = x + x$), y también $x^2 = x \cdot x$. Además, se puede usar la siguiente propiedad (sin necesidad de probarla): Si $g : B \to C$ es un homomorfismo de anillos y $b \in B$, se tiene que $f(j \cdot b) = j \cdot f(b)$.

Solución:

(a):

(b):

(c):

Para todo $a, b \in A$ se tiene que $(a + b)^2 = (a + b)(a + b) = a(a + b) + b(a + b) = a^2 + ab + ba + b^2$. Entonces si A es conmutativo, y por lo tanto ab = ba, se tiene (??) (0.5 pto).

Para ver la conmutatividad de A en el caso de que se tenga (??), sean $a, b \in A$ arbitrarios (0.5 pto por tomar a, b arbitrarios). Entonces $(a+b)^2 = a^2 + 2ab + b^2 = a^2 + ab + ab + b^2$. Como también $(a+b)^2 = a^2 + ab + ba + b^2$, tenemos $a^2 + ab + ab + b^2 = a^2 + ab + ba + b^2$ (0.5 pto). Como A es anillo, se pueden cancelar los elementos a^2, ab, b^2, y obtenemos ab = ba (0.5 pto).

Por contradicción. Suponemos que A no es dominio de integridad, entonces existen $a, b \in A \setminus \{0\}$ tales que ab = 0. Notamos que ab = 0 = a0 (0.5 pto), y como a es cancelable, esto implica que b = 0, una contradicción (0.5 pto).

Como f es homomorfismo de anillos, tenemos que $f(1_A) = [1]_n$ (0.5 pto). Sea $a \in A$ arbitrario. Sabemos que $f(a) = [j]_n$ para algún $j \in \{0, 1, \ldots, n-1\}$ (0.5 pto). Por la definición de $+_n$, se tiene que $[j]_n = j \cdot [1]_n$ (0.5 pto). Como f es homomorfismo, se deduce que $f(a) = [j]_n = j \cdot [1]_n = j \cdot f(1_A) = f(j \cdot 1_A)$ (0.5 pto). Como f es inyectiva por ser isomorfismo (0.5 pto), tenemos lo requerido tomando k = j (0.5 pto).