Control Recuperativo 2

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique las hipótesis.

P1.

a) Considere la función $f: \mathbb{R} \to \mathbb{R}$ donde

$$f(x) = (x+1)^2.$$

1) (1.5 pts.) Determine el conjunto imagen $f((-1,0) \cup [1,2])$.

Solución

Notemos que

$$-1 < x < 0 \implies 0 < x + 1 < 1 \implies 0 < (x + 1)^2 < 1,$$

por tanto, $f((-1,0)) \subseteq (0,1)$. Además, para cada $y \in (0,1)$, elegimos $x = \sqrt{y} - 1$, y entonces tenemos que f(x) = y, y además, $x \in (-1,0)$. Por tanto,

$$f((-1,0)) = (0,1)$$
. ... 0.5 pts.

Por otro lado, tenemos que

$$1 \le x \le 2 \implies 2 \le x+1 \le 3 \implies 4 \le (x+1)^2 \le 9,$$

y entonces $f([1,2]) \subseteq [4,9]$. Como hicimos en el párrafo anterior, dado $y \in [4,9]$, elegimos $x = \sqrt{y} - 1$, y tenemos que f(x) = y, y además $x \in [1,2]$. Por tanto

$$f([1,2]) = [4,9].$$
 ... 0.5 pts.

Por definición de conjunto imagen tenemos que

$$f((-1,0) \cup [1,2]) = f((-1,0)) \cup f([1,2]) = (0,1) \cup [4,9].$$
 ...0.5 pts.

2) (1.5 pts.) Determine la preimagen $f^{-1}([-1,0])$.

Para cada $x \in \mathbb{R}$ tenemos $f(x) = (x+1)^2$, por lo que $f(x) \ge 0$. Este hecho implica que para cada $y \in [-1,0)$, tenemos que $f^{-1}(\{y\}) = \emptyset$ 0.5 pts. Por otro lado, si y = f(x) = 0, tenemos $f(x) = (x+1)^2 = 0$, lo que implica que x+1=0, y por tanto x=-1. Luego, la preimagen $f^{-1}(\{0\}) = \{-1\}$ 0.5 pts. Además, por definición de preimagen tenemos que

$$f^{-1}([-1,0]) = \bigcup_{y \in [-1,0]} f^{-1}(\{y\}) = \{-1\}.$$
 ... 0.5 pts.

- b) Calcule las siguientes sumas:
 - 1) (1 pt.) $\sum_{k=0}^{n} \frac{(k+1)!(1-k)}{k^2+k}$.

Sugerencia: Utilice la identidad $r \cdot r! = (r+1)! - r!$

Solución

Tenemos

$$\sum_{k=1}^{n} \frac{(k+1)!(1-k)}{k^2 + k} = \sum_{k=1}^{n} \frac{(k+1)k(k-1)!(1-k)}{k(k+1)} \qquad \dots 0.2 \text{ pts.}$$

$$= \sum_{k=1}^{n} (k-1)!(1-k) \qquad \dots 0.2 \text{ pts.}$$

$$= \sum_{k=1}^{n} -(k-1)!(k-1) \qquad \dots 0.2 \text{ pts.}$$

$$= -\sum_{k=1}^{n} (k! - (k-1)!) \qquad \dots 0.2 \text{ pts.}$$

$$= -(n! - 0!)$$

$$= 1 - n! \qquad \dots 0.2 \text{ pts.}$$

2) (2 pts.)
$$\sum_{k=0}^{n} \sum_{j=1}^{m+1} (5+2k)(2^{j-1}3^{j+1}).$$

Dado que el término 5+2k es independiente de la segunda suma con índice j, tenemos lo siguiente:

$$\sum_{k=0}^{n} \sum_{j=1}^{m+1} (5+2k)(2^{j-1}3^{j+1}) = \sum_{k=0}^{n} (5+2k) \sum_{j=1}^{m+1} (2^{j-1}3^{j+1}). \qquad \dots 0.3 \text{ pts.}$$

La primer suma es una suma aritmética, para la cual tenemos lo siguiente:

$$\sum_{k=0}^{n} (5+2k) = \sum_{k=0}^{n} 5 + \sum_{k=0}^{n} 2k$$

$$= 5 \sum_{k=0}^{n} 1 + 2 \sum_{k=0}^{n} k$$

$$= 5(n+1) + 2 \frac{n(n+1)}{2}$$

$$= (n+1)(n+5). \quad \dots 0.5 \text{ pts.}$$

Para la segunda suma, la cual es una suma geométrica, tenemos

$$\sum_{j=1}^{m+1} (2^{j-1} \cdot 3^{j+1}) = 3^2 \sum_{j=1}^{m+1} 2^{j-1} \cdot 3^{j-1} \qquad \dots 0.2 \text{ pts.}$$

$$= 9 \sum_{j=0}^{m} 2^j \cdot 3^j \qquad \dots 0.2 \text{ pts.}$$

$$= 9 \sum_{j=0}^{m} (2 \cdot 3)^j \qquad \dots 0.2 \text{ pts.}$$

$$= 9 \sum_{j=0}^{m} 6^j$$

$$= 9 \left(\frac{6^{m+1} - 1}{6 - 1} \right) = \frac{9}{5} (6^{m+1} - 1). \qquad \dots 0.2 \text{ pts.}$$

Combinando los dos resultados obtenemos:

$$\sum_{k=0}^{n} \sum_{j=1}^{m+1} (5+2k)(2^{j-1}3^{j+1}) = \frac{9}{5} (6^{m+1}-1)(n+1)(n+5) \dots 0.4 \text{ pts.}$$

P2.

a) Definimos la relación \mathcal{R} en $\mathbb{R} \setminus \{-1\}$ de la siguiente manera:

$$x\mathcal{R}y \iff \frac{x+1}{y+1} \in \mathbb{N}.$$

1) (1.5 pts.) Demostrar que \mathcal{R} es una relación de orden.

Vamos a mostrar que \mathcal{R} es refleja, antisimétrica y transitiva.

- Refleja: Para cada $x \in \mathcal{R} \setminus \{1\}$ tenemos que $\frac{x+1}{x+1} = 1 \in \mathbb{N}$, por tanto \mathcal{R} es refleja. ...0.5 pts.
- Antisimétrica: Supongamos que $x\mathcal{R}y$ y $y\mathcal{R}x$, entonces existen $h, k \in \mathbb{N}$ tales que $\frac{x+1}{y+1} = k$ y $\frac{y+1}{x+1} = h$, y equivalentemente, x+1 = (y+1)k y y+1 = (x+1)h. Luego tenemos

$$x+1=(y+1)k=(x+1)hk \implies hk=1 \implies h=1 \land k=1 \implies x=y.$$

Por tanto, \mathcal{R} es antisimétrica. ... 0.5 pts.

■ Transitiva: Si $x\mathcal{R}y$ y $y\mathcal{R}z$, entonces existen $h, k \in \mathbb{N}$ tales que $\frac{x+1}{y+1} = k$ y $\frac{y+1}{z+1} = h$. Luego

$$\frac{x+1}{z+1} = \frac{(y+1)k}{z+1} = k\frac{y+1}{z+1} = kh \in \mathbb{N}.$$

Por tanto, xRz, y entonces R es transitiva. ...0.5 pts.

2) (0.5 pts.) Determinar si \mathcal{R} es orden total.

Solución

No es orden total, pues para x=2 y y=3 tenemos $\frac{x+1}{y+1}\notin\mathbb{N}$ y $\frac{y+1}{x+1}\notin\mathbb{N}$, por lo que $(x,y),(y,x)\notin\mathcal{R}$, y por tanto no son comparables. ... 0.5 pts.

b) En \mathbb{Z}^2 se define la relación \mathcal{R} de la siguiente manera:

$$(x,y)\mathcal{R}(u,v) \iff (x \equiv_3 u) \land (y \equiv_5 v).$$

1) (2 pts.) Demostrar que \mathcal{R} es una relación de equivalencia.

Vamos a mostrar que \mathcal{R} es refleja, simétrica y transitiva.

- Refleja: Dado $(x,y) \in \mathbb{Z}^2$ tenemos que $x \equiv_3 x$ y $y \equiv_5 y$, y por tanto $(x,y)\mathcal{R}(x,y)$0.4 pt.
- Simétrica: Supongamos que $(x,y),(u,v) \in \mathbb{Z}^2$ satisfacen $(x,y)\mathcal{R}(u,v)$, lo que implica que $x \equiv_3 u$ y $y \equiv_5 v$, es decir, x-u=3k y y-v=5h, para algunos $k,h \in \mathbb{Z}$. Luego

$$u-x=3(-k) \wedge v-y=3(-h) \implies (u,v)\mathcal{R}(x,y)$$

Por tanto, \mathcal{R} es simétrica. ... 0.6 pt.

■ Transitiva: Considere $(x,y), (u,v), (w,z) \in \mathbb{Z}^2$ tales que $(x,y)\mathcal{R}(u,v)$ y $(u,v)\mathcal{R}(w,z)$. Luego, existen enteros k_1,k_2,h_1,h_2 tales que

$$x - u = 3k_1$$
, $y - v = 5k_2$, $u - w = 3h_1$, $v - z = 5h_2$.

Entonces,

$$x - w = x - u + u - w = (x - u) + (u - w) = 3k_1 + 3h_1 = 3(k_1 + h_1),$$

$$y - z = y - v + v - z = (y - v) + (v - z) = 5k_2 + 5h_2 = 5(k_2 + h_2).$$

Se deduce que $(x, y)\mathcal{R}(w, z)$, y por tanto \mathcal{R} es transitiva. ... 1 pt.

2) (2 pts.) Determine las clases de equivalencia $[(0,0)]_{\mathcal{R}}$ y $[(1,3)]_{\mathcal{R}}$, y exhiba al menos 3 elementos en cada clase.

Solución

Tenemos

$$[(0,0)]_{\mathcal{R}} = \{(u,v) \in \mathbb{Z}^2 \mid \exists k, h \in \mathbb{Z} \text{ tales que } u = 3k \text{ y } v = 5k\}$$

= $\{(u,v) \in \mathbb{Z}^2 \mid u \text{ es múltiplo de 3 y } v \text{ es múltiplo de 5} \dots 0.5 \text{ pts.}$

Además, $(0,0), (3,5), (6,10) \in [(0,0)]_{\mathcal{R}}$...0.5 pts. Por otro lado,

$$\begin{split} [(1,3)]_{\mathcal{R}} &= \{(u,v) \in \mathbb{Z}^2 \mid \exists \, k, h \in \mathbb{Z} \text{ tales que } u-1 = 3k \text{ y } v-3 = 5k\} \\ &= \{(u,v) \in \mathbb{Z}^2 \mid u-1 \text{ es múltiplo de 3 y } v-3 \text{ es múltiplo de 5}\}....\mathbf{0.5} \text{ pts.} \end{split}$$

Luego, $(-2, -2), (-2, 3), (1, 3) \in [(1, 3)]_{\mathcal{R}}$0.5 pts.

P3.

a) Para $n \in \mathbb{N} \setminus \{0\}$ definimos el conjunto

$$A_n = \left\{ \frac{2i+1}{2^n} \mid 0 \le i < 2^{n-1} \right\}.$$

1) (2 pts.) Demostrar que $|A_3| = 4$, $|A_4| = 8$, y para cada $n \in \mathbb{N}$, determinar $|A_n|$.

Tenemos que

$$A_3 = \left\{ \frac{1}{4}, \frac{3}{4}, \frac{5}{4}, \frac{7}{4} \right\} \quad \text{y} \quad A_4 = \left\{ \frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}, \frac{9}{8}, \frac{11}{8}, \frac{13}{8}, \frac{15}{8} \right\}.$$

Por tanto $|A_3| = 4 \text{ y } |A_4| = 8....0.6 \text{ pts.}$

Ahora vamos a mostrar que $|A_n|=2^{n-1}$. Definimos la función $f:A_n\to\{1,\ldots,2^{n-1}\}$ de la siguiente manera:

$$f\left(\frac{2i+1}{2^n}\right) = i+1.$$

Dado que $0 \le i < 2^{n-1}$, tenemos que $1 \le f\left(\frac{2i+1}{2^n}\right) = i+1 \le 2^{n-1}$, por tanto $f(i) \in \{1, \dots, 2^{n-1}\}$.

■ Inyectividad: Si $x = \frac{2i+1}{2^n}, y = \frac{2j+1}{2^n} \in A_n$ con $x \neq y$, tenemos $i \neq j$, y entonces

$$f(x) = i + 1 \neq j + 1 = f(y).$$

Concluímos que f es inyectiva. ... 0.5 pts.

■ Epiyectividad: Para cada $j \in \{1, ..., 2^{n-1}\}$, tenemos $j-1 \in \{0, ..., 2^{n-1}-1\}$, y por tanto $\frac{2(j-1)+1}{2^n} \in A_n$. Por tanto, f es epiyectiva. ... 0.5 pts.

Dado que f es biyectiva, y por definición de cardinal, tenemos que

$$|A_n| = |\{1, \dots, 2^{n-1}\}| = 2^{n-1} \dots 0.4 \text{ pts.}$$

2) (1 pt.) Determinar si A_n y A_m son disjuntos, para $n \neq m$.

Solución

Veámos que $A_n \cap A_m = \emptyset$, para $n \neq m$. Supongamos que no, entonces existe $x \in A_n \cap A_m$, y entonces

$$\frac{2i+1}{2^n} = x = \frac{2j+1}{2^m},$$

para algunos i, j, n, m con $0 \le i < 2^{n-1}$ y $0 \le j < 2^{m-1}$. Sin pérdida de generalidad podemos suponer que n < m. Luego,

$$\frac{2i+1}{2^n} = x = \frac{2j+1}{2^m} \implies (2i+1)2^m = (2j+1)2^n \implies (2i+1)2^{m-n} = 2j+1, \dots 0.5 \text{ pts.}$$

y como $(2i+1)2^{m-n}$ es par (porque $m-n\geq 1$), mientras que 2j+1 es impar, tenemos una contradicción. Se deduce que A_n y A_m son disjuntos. . . . 0.5 pts.

3) (1 pt.) Para m=125, sea $\mathcal{A}_m=\bigcup_{k=1}^m A_k$. Demuestre que $|\mathcal{A}_m|=2^{125}-1$.

Dado que $A_m = A_1 \cup A_2 \cup \dots A_{125}$, y como $A_i \cap A_j = \emptyset$ para $i \neq j$, tenemos que el cardinal de la unión disjunta es la suma de cardinales, es decir,

$$|\mathcal{A}_m| = |\bigcup_{i=1}^m A_i| = \sum_{i=1}^m |A_i|.$$
 ... 0.5 pts.

Utilizando sumatoria geométrica, tenemos que

$$|\mathcal{A}_m| = \sum_{i=1}^m |A_i|$$

$$= \sum_{i=1}^m 2^{i-1}$$

$$= \sum_{i=0}^{m-1} 2^i$$

$$= \frac{2^m - 1}{2 - 1}$$

$$= 2^{125} - 1$$

 $\dots 0.5$ pts. por el desarrollo correcto de la sumatoria

b) (2 pts.) Demuestre, sin usar inducción, que

$$\sum_{i=0}^{n-1} \sum_{j=1}^{n} \binom{n-1}{i} \binom{n}{j} = 2^{n-1}(2^n - 1).$$

Notemos que

$$\sum_{i=1}^{n} \binom{n-1}{i} \binom{n}{j} = \binom{n-1}{i} \sum_{j=1}^{n} \binom{n}{j}$$

porque $\binom{n-1}{i}$ es constante para cada valor de j. ...0.4 pts. Además, utilizando el Teorema del binomio tenemos que

$$\sum_{j=1}^{n} \binom{n}{j} = \sum_{j=0}^{n} \binom{n}{j} 1^{j} \cdot 1^{n-j} - \binom{n}{0} 1^{j} \cdot 1^{n-j} = (1+1)^{n} - 1 = 2^{n} - 1 \dots 0.4 \text{ pts.}$$

Utilizamos nuevamente el Teorema del binomio y tenemos

$$\sum_{i=0}^{n-1} \sum_{j=1}^{n} \binom{n-1}{i} \binom{n}{j} = \sum_{i=0}^{n-1} \binom{n-1}{i} \sum_{j=1}^{n} \binom{n}{j}$$

$$= \sum_{i=0}^{n-1} \binom{n-1}{i} (2^n - 1) \qquad \dots 0.3 \text{ pts.}$$

$$= (2^n - 1) \sum_{i=0}^{n-1} \binom{n-1}{i} \qquad \dots 0.3 \text{ pts.}$$

$$= (2^n - 1) \sum_{i=0}^{n-1} \binom{n-1}{i} 1^i \cdot 1^{j-i} \qquad \dots 0.3 \text{ pts.}$$

$$= (2^n - 1)(1+1)^{n-1}$$

$$= (2^n - 1)(2^{n-1}) \qquad \dots 0.3 \text{ pts.}$$