PAUTA CONTROL RECUPERATIVO

P1. Se define \mathcal{R} relación en $\mathbb{N} \times \mathbb{N}$ dada por

$$\forall (n,m), (p,q) \in \mathbb{N} \times \mathbb{N} : (n,m)\mathcal{R}(p,q) \iff m-n=q-p.$$

a) (3 pts.) Demuestre que \mathcal{R} es una relación de equivalencia.

Solución

Es necesario probar que \mathcal{R} es refleja, simétrica y transitiva $\leftarrow [0,5 \text{ pts}].$

- \mathcal{R} es refleja: Sea $(n, m) \in \mathbb{N} \times \mathbb{N}$ se tiene $(n, m)\mathcal{R}(n, m) \Leftrightarrow m n = m n$, lo cual es verdadero. $\leftarrow [0,5]$ pts.
- \mathcal{R} es simétrica: Sean $(n,m), (p,q) \in \mathbb{N} \times \mathbb{N}$, tales que $(n,m)\mathcal{R}(p,q) \Leftrightarrow m-n=q-p \Leftrightarrow q-p=m-n \Leftrightarrow (p,q)\mathcal{R}(n,m) \leftarrow [1 \text{ pto}].$
- \mathcal{R} es transitiva: Sean $(n,m),(p,q),(e,f) \in \mathbb{N} \times \mathbb{N}$ tales $(n,m)\mathcal{R}(p,q) \wedge (p,q)\mathcal{R}(e,f) \Leftrightarrow (m-n=q-p) \wedge (q-p=f-e) \leftarrow [0,5 \text{ pts}]$. luego por transitividad de la igualdad $m-n=f-e \Leftrightarrow (n,m)\mathcal{R}(e,f) \leftarrow [0,5 \text{ pts}]$. Y se concluye que \mathcal{R} es de equivalencia \checkmark .

Puntajes y comentarios para corrección

Si no se comenta las tres propiedades a probar que definen a una relación de equivalencia, pero si trabaja con cada una por separado otorgar de todas maneras los [0,5 pts] del inicio.

b) (1.5 pts.) Sea $[(0,0)]_{\mathcal{R}}$ la clase de (0,0), muestre que $[(0,0)]_{\mathcal{R}} = \{(p,p) : p \in \mathbb{N}\}.$

Solución: .

Se tiene $[(0,0)]_{\mathcal{R}} = \{(p,q) \in \mathbb{N}^2 : (p,q)\mathcal{R}(0,0)\} = \{(p,q) \in \mathbb{N}^2 : q-p=0\} = \{(p,q) \in \mathbb{N}^2 : p=q\} = \{(p,p) : p \in \mathbb{N}\} \checkmark. \leftarrow [0,5 \text{ pts}] \text{ por la 1era, 2da y última igualdad respectivamente.}$

Puntajes y comentarios para corrección

Si no describe la clase y opera directamente, otorgar de todas maneras el puntaje completo de estar correcto.

c) (1,5 pts.) Pruebe que $[(0,0)]_{\mathcal{R}}$ es un conjunto numerable.

Solución

Hay varias maneras, algunas son

- 1) $[(0,0)]_{\mathcal{R}}$ es un conjunto infinito contenido en $\mathbb{N} \times \mathbb{N}$ que es numerable, luego $[(0,0)]_{\mathcal{R}}$ es numerable \checkmark
- 2) Notar que $[(0,0)]_{\mathcal{R}} = \bigcup_{p \in \mathbb{N}} \{(p,p)\}$, es decir es unión numerable de conjuntos finitos y luego numerable \checkmark .
- 3) $\varphi: \mathbb{N} \to [(0,0)]_{\mathcal{R}}$, dada por $\varphi(p) = (p,p)$ es biyectiva, luego se tiene lo pedido \checkmark .

Puntajes y comentarios para corrección

Otorgar [1,5 pts] por cualquiera de las maneras de probar la numerabilidad. Desglosar (de ser necesario) el puntaje en [0,5 pts] de acuerdo a la estructura de la solución que eventualmente se aborde.

P2. a) 1) (1 pto.) Probar, sin uso de inducción (es decir por cálculo directo) que

$$\forall n \in \mathbb{N}, n \ge 1: \quad \sum_{k=2}^{n+1} \binom{k}{2} = \binom{n+2}{3}. \tag{1}$$

Ind: Recordar que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Solución

Hay dos formas de abordar este cálculo.

• Vía traslación de índices

$$\sum_{k=2}^{n+1} \binom{k}{2} = \sum_{k=1}^{n} \binom{k+1}{2} = \frac{1}{2} \sum_{k=1}^{n} k(k+1) = \frac{1}{2} \left[\sum_{k=1}^{n} k^2 + \sum_{k=1}^{n} k \right] \leftarrow [0,5 \text{ pts}]$$

$$= \frac{1}{2} \cdot \frac{n(n+1)(2n+1)}{6} + \frac{1}{2} \cdot \frac{n(n+1)}{2} = \frac{n(n+1)(n+2)}{6}$$

$$= \binom{n+2}{3} \leftarrow [0,5 \text{ pts}] \checkmark.$$

• Calculando directamente

$$\begin{split} \sum_{k=2}^{n+1} \binom{k}{2} &= \frac{1}{2} \sum_{k=2}^{n+1} k(k-1) = \frac{1}{2} \left[\sum_{k=1}^{n+1} k^2 - \sum_{k=1}^{n+1} k - (1^2 - 1) \right] \leftarrow \textbf{[0,5 pts]} \\ &= \frac{1}{2} \cdot \frac{(n+1)(n+2)(2n+3)}{6} - \frac{1}{2} \cdot \frac{(n+1)(n+2)}{2} \\ &= \frac{n(n+1)(n+2)}{6} = \binom{n+2}{3}, \leftarrow \textbf{[0,5 pts]} \checkmark. \end{split}$$

2) (1 pto.) Demuestre ahora (1) usando inducción.

Solución

Caso base
$$n = 1$$
: $\sum_{k=2}^{2} {k \choose 2} = {3 \choose 3} \Leftrightarrow 1 = {2 \choose 2} = {3 \choose 3} = 1 \Leftrightarrow V \leftarrow [0, 2 \text{ pts}] \checkmark$.

Hipótesis y paso inductivo: Suponemos que
$$\sum_{k=2}^{n+1} {k \choose 2} = {n+2 \choose 3}$$
, por demostrar $\sum_{k=2}^{n+2} {k \choose 2} = {n+3 \choose 3} \leftarrow [0,3 \text{ pts}]$. En efecto $\sum_{k=2}^{n+2} {k \choose 2} = \sum_{k=2}^{n+1} {k \choose 2} + {n+2 \choose 2} = {n+2 \choose 3} + {n+2 \choose 3} = {n+3 \choose 3} \leftarrow [0,5 \text{ pts}] \checkmark$.

Comentarios para corrección

OBS: La última igualdad se debe a la aplicación de la identidad de Pascal, considerar igualmente válido si se desarrolla los coeficientes binomiales y se llega al resultado.

- b) En $G = \mathbb{Q} \setminus \{0\} \times \mathbb{Q}$ se define la l.c.i * por $(p,q) * (r,s) = (p \cdot r, p \cdot s + q)$, donde $+ y \cdot q$ son las operaciones usuales en \mathbb{Q} . Se sabe (no lo demuestre) que * es asociativa en G.
 - 1) (0.5 pts.) Encontrar (n_1, n_2) neutro para * en G.

Solución

Tal $(n_1, n_2) \in G$ debe satisfacer $(n_1, n_2) * (p, q) = (p, q) * (n_1, n_2) = (p, q)$ para todo $(p,q) \in G$. Se tiene que $(n_1,n_2) * (p,q) = (n_1p,n_1q + n_2) =$ $(p,q) \Leftrightarrow n_1p = p \wedge n_1q + n_2 = q$, luego $n_1 = 1(p \neq 0) \wedge n_2 = 0$. Así $(n_1, n_2) = (1, 0)$ y se cumple además que $(p, q) * (1, 0) = (p, q) \leftarrow [0, 5]$.

Comentarios para corrección

En el caso que la solución no se refiera a la verificación (o no lo comente) de que el neutro encontrado lo es por ambos lados, descontar [0,1 pto].

2) (1,5 pts.) Para cada $(p,q) \in G$ determine su inverso (p',q') para *. ¿Es (p',q')único? explique.

Solución

Sea $(p,q) \in G$, (p',q') es su inverso si (p,q)*(p',q') = (1,0) = (p',q')*(p,q). De la primera igualdad se sigue $pp' = 1 \land pq' + q = 0$ luego p' = 1/p ($p \neq 1$ 0) y $q' = -q/p \leftarrow [0,7 \text{ pts}]$. Así (p',q') = (1/p,-q/p) verifica además $(1/p, -q/p) * (p,q) = (1,0) \leftarrow [0,5 \text{ pts}]$. Por último (p',q') es único pues * es asociativa en $G \leftarrow [0,3 \text{ pts}] \checkmark$.

Comentarios para corrección

Si no se verifica que el inverso encontrado cumple por ambos lados, pero esta planteado dentro de la solución descontar [0,2 pts] de los [0,5 pts] de ese ítem.

3) (0.5 pts.) Investigar si * es conmutativa en G.

Solución

Si $(p,q), (r,s) \in G$ entonces (p,q)*(r,s) = (pr,ps+q) y (r,s)*(p,q) = (rp,rq+s) son distintos en general, * no es conmutativa $\leftarrow [0,5]$ pts \checkmark .

Comentarios para corrección

Basta con un contraejemplo que muestre que $(p,q)*(r,s) \neq (r,s)*(p,q)$, en tal caso asignar puntaje completo.

4) (1,5 pts.) Para $b \in \mathbb{Q}$ fijo, se define la función $f: (G,*) \to (G,*)$ dada por f(p,q) = (p,bq) para cada $(p,q) \in G$. Demuestre que f es un homomorfismo.

Solución

Para $(p,q), (r,s) \in G$ se debe probar que f((p,q)*(r,s)) = f(p,q)*f(r,s) $\leftarrow [0,3]$ En efecto en primer lugar f((p,q)*(r,s)) = f(pr,ps+q) = (pr,b(ps+q)) y por otro lado $f(p,q)*f(r,s) = (p,bq)*(r,bs) = (pr,pbs+bq) = (pr,b(ps+q)) \leftarrow [1]$ Pto]. Se concluye que es un homomorfismo (morfismo) $\leftarrow [0,2]$ pts] \checkmark .

Comentarios para corrección

En la obtención de la igualdad f((p,q)*(r,s)) = f(p,q)*f(r,s) se asigna [0,5 pts] por cada cálculo que lleva a (pr,b(ps+q)).