

PAUTA CONTROL 5

P1. a) (3 pts.) Muestre que el conjunto $A = \{q\sqrt{2} : q \in \mathbb{Q}\}$ es numerable.

Solución: P1 a).

Hay al menos tres formas de hacer lo pedido

- 1) La función $f: \mathbb{Q} \to A$ tal que $f(q) = q\sqrt{2}$ es biyectiva, pues $q_1\sqrt{2} = q_2\sqrt{2} \Longrightarrow q_1 = q_2$ (inyectividad). Y dado $x = q\sqrt{2} \in A$ se tiene f(q) = x (epiyectividad). Así A y \mathbb{Q} tienen el mismo cardinal, siendo conocido que \mathbb{Q} es numerable \checkmark .
- 2) Escribiendo $A = \bigcup_{q \in \mathbb{Q}} \{q\sqrt{2}\}$. Se tiene que es una unión numerable de conjuntos finitos, luego numerable \checkmark .
- 3) Notar que $A \subset C = \{a + b\sqrt{2}; a, b \in \mathbb{Q}\}$. Así A es un conjunto infinito incluído en un conjunto numerable y luego numerable. Para probar que C es numerable se puede establecer $f: \mathbb{Q} \times \mathbb{Q} \to C$ por $f(q_1, q_2) = q_1 + q_2\sqrt{2}$ la cual es biyectiva \checkmark .

Puntajes y comentarios para corrección

- 1) Por proponer una correcta biyección \leftarrow [1,5 pts], luego verificar que es biyectiva (inyectiva + epiyectiva) \leftarrow [1 pto]. Asignar [0,5 pts]. por concluir que A es numerable. Puede ser que se proponga una biyección y argumenten o expliquen porque es inyectiva y epiyectiva, asignar de todas maneras el [1 pto] en tal caso y si no descontar a lo más [0,5 pts].
- 2) Asignar [2 pts] por proponer una unión como la indicada y [1 pto] por invocar adecuadamente el resultado de unión numerable de conjuntos finitos es numerable.
- 3) Asignar [1 pto] por proponer un conjunto como el C y luego [0,5 pts] por justificar que A es infinito incluido en él, luego asignar [1 pto] por probar de alguna manera correcta que C es numerable y [0,5 pts] por concluir invocando el resultado respectivo.
- 4) También es correcto proponer $A = \mathbb{Q} \cdot \{\sqrt{2}\}$ y demostrar que ese "conjunto producto" es numerable, en tal caso asignar puntaje por la igualdad de conjuntos y por probar que lo propuesto es numerable (de alguna manera correcta).
- b) (3 pts.) Probar que $B = \{\frac{n}{m}\sqrt{2} : n \text{ es un entero par y } m \text{ entero impar} \}$ es numerable.

Solución:

- 1) Una manera es darse cuenta que $B \subset A$, con el mismo A de la parte anterior en la cual se prueba que es numerable. Como B es infinito pues el conjunto $\{\frac{n}{m}\sqrt{2}: n \text{ es un entero par y } m=1\} \subset B$ el cual es infinito (tiene el cardinal de los pares naturales), así se concluye que B es numerable.
- 2) Otra forma es expresar B como una unión numerable de conjuntos numerables, por ejemplo $B = \bigcup_{k \in \mathbb{Z}} B_k$ donde se define para cada k entero $B_k = \{\frac{n}{2k+1}\sqrt{2} : n \text{ es un entero par}\}$ y se cumple $B_k \subset A$ el cual es numerable por la parte anterior.

Puntajes y comentarios para corrección

- 1) Por identificar y justificar que $B \subset A$ asignar [1,5 pts], luego asignar [0,5 pts] por justificar que B es infinito y [1 pto] por aplicar a este caso el resultado de infinito incluido en un numerable es numerable.
- 2) Asignar [1,5 pts] por proponer B como una unión numerable (u otra similar), luego asignar [1 pto] por probar que cada B_k (o el que se proponga en la respuesta) es numerable para finalmente otorgar [0,5 pts] por aplicar el resultado a este caso de unión numerable de numerables es numerable.
- **P2.** Considere el siguiente conjunto de funciones

$$\mathcal{F} = \{ f : \mathbb{R} \longrightarrow \mathbb{R}, \text{ tal que } f(x) = ax + b. \text{ Con } a, b \in \mathbb{Q}, a \neq 0 \}.$$

Considerando (\mathcal{F}, \circ) , donde \circ es la composición de funciones, se pide

a) (1,5 pts.) Probar que \circ es l.c.i en \mathcal{F} , es decir si $f, g \in \mathcal{F}$ entonces $f \circ g \in \mathcal{F}$.

Solución

Sean f, g en \mathcal{F} tal que f(x) = ax + b y g(x) = cx + d con $a, b, c, d \in \mathbb{Q}$ y $a, c \neq 0$. Ciertamente $f \circ g : \mathbb{R} \to \mathbb{R} \leftarrow [0,2 \text{ pts}]$ y en cada $x \in \mathbb{R}$ $(f \circ g)(x) = f(cx + d) = acx + ad + b \leftarrow [1 \text{ pto}]$, como $ac \neq 0 \in \mathbb{Q}$ y $ad + b \in \mathbb{Q} \leftarrow [0,2 \text{ pts}]$ se concluye que $f \circ g \in \mathcal{F} \leftarrow [0,1 \text{ pto}] \checkmark$.

Comentarios para corrección

Es probable que se argumente desde el hecho que componer funciones lineales reales (o rectas en \mathbb{R}), en tal caso descontar sólo lo que concierne a justificar (si es que no se hace) si los coeficientes cumplen las condiciones.

b) (1,5 pts.) Verifique que $f = \mathrm{id}_{\mathbb{R}}$ (función identidad en \mathbb{R}) es el neutro de \mathcal{F} para \circ

Solución

Se tiene que $id_{\mathbb{R}}(x) = 1 \cdot x + 0$ luego $id_{\mathbb{R}} \in \mathcal{F} \leftarrow [0,3]$, por otro lado si $f \in \mathcal{F}$ entonces $f \circ id_{\mathbb{R}} = id_{\mathbb{R}} \circ f = f \leftarrow [1]$ pto, por ende $id_{\mathbb{R}}$ es el neutro de \mathcal{F} para $\circ \leftarrow [0,2]$ pts.

c) (1,5 pts.) Para cada $f \in \mathcal{F}$, determine su inverso f^{-1} para \circ . Verifique que $f^{-1} \in \mathcal{F}$.

Solución

Sea $f \in \mathcal{F}$ tal que f(x) = ax + b ($a \neq 0$ y b racionales), buscando $g \in \mathcal{F}$ con g(x) = cx + d tal que $f \circ g = \mathrm{id}_{\mathbb{R}}$ se llega acx + ad + b = x $\forall x \in \mathbb{R}$ \leftarrow [0,5 pts], de donde $ac = 1 \land ad + b = 0$ y luego d = -b/a, $c = 1/a \leftarrow$ [0,5 pts], racionales y bien definidos pues $a \neq 0$. Luego $g(x) = \frac{1}{a}x - \frac{b}{a} \in \mathcal{F} \leftarrow$ [0,2 pts] y cumple también $g(ax + b) = \frac{1}{a}(ax + b) - \frac{b}{a} = x$, es decir $g \circ f = \mathrm{id}_{\mathbb{R}} \leftarrow$ [0,1 pts]. Luego $g = f^{-1}$ es el inverso de $f \leftarrow$ [0,2 pts] (siendo único porque \circ es asociativa) \checkmark .

d) Considere la función

$$\varphi: (\mathcal{F}, \circ) \longrightarrow (\mathbb{R}, \cdot)$$

$$f \longmapsto \varphi(f),$$

en donde (\mathbb{R},\cdot) · es la multiplicación de reales y para $f \in \mathcal{F}$ tal que f(x) = ax + b entonces $\varphi(f) = a$.

Demuestre que para todo $f, g \in \mathcal{F}$ se tiene que $\varphi(f \circ g) = \varphi(f) \cdot \varphi(g)$.

Solución

Sean $f, g \in \mathcal{F}$ tales que f(x) = ax + b y g(x) = cx + d por la definición de φ se tiene que $\varphi(f) = a$ y $\varphi(g) = c \leftarrow [0,5 \text{ pts}]$. Ahora en cada $x \in \mathbb{R}$ se tiene que $(f \circ g)(x) = acx + ad + b \leftarrow [0,3 \text{ pts}]$ por lo tanto $\varphi(f \circ g) = ac \leftarrow [0,5 \text{ pts}]$ con lo cual se verifica finalmente que $\varphi(f \circ g) = \varphi(f) \cdot \varphi(g) \leftarrow [0,2 \text{ pts}] \checkmark$.