

Control 5

P1. a) Sea A el conjunto de los números reales que se pueden escribir como sumas de números enteros y múltiplos enteros de $\sqrt{2}$, es decir,

$$A = \{n + m\sqrt{2} \mid n, m \in \mathbb{Z}\}.$$

i) (3 pts.) Demuestre que (A, +) es un subgrupo de $(\mathbb{R}, +)$.

Solución: Primera forma (usando el teorema de caracterización de subgrupos): Se tiene que A no es vacío (0,5 pts por decir que A no es vacío) porque, por ejemplo, $0 = 0 + 0\sqrt{2} \in A$ (tomando n = 0 y m = 0 en la definición de A). Además, $A \subseteq \mathbb{R}$ (0,5 pts por decir que $A \subseteq \mathbb{R}$) porque $n + m\sqrt{2}$ es un número real si $n, m \in \mathbb{Z}$.

Solo resta demostrar que dados $x, y \in A$, entonces $x + (-y) \in A$ para obtener que (A, +) es un subgrupo de $(\mathbb{R}, +)$.

Sean $x, y \in A$. Claramente, x + (-y) = x - y, por lo que debemos demostrar que $x - y \in A$. Como $x, y \in A$, existen $n, m, p, q \in \mathbb{Z}$ tales que $x = n + m\sqrt{2}$ e $y = p + q\sqrt{2}$. Luego,

$$x-y=(n+m\sqrt{2})-(p+q\sqrt{2})$$
 $(x=n+m\sqrt{2},\,y=p+q\sqrt{2})$ $n+m\sqrt{2}-p-q\sqrt{2}$ (Artimética de números reales) $(n-p)+(m-q)\sqrt{2}$ (Artimética de números reales)

Definiendo entonces k = n - p y $\ell = m - q$, se tiene que $x - y = k + \ell\sqrt{2}$. Como $n, m, p, q \in \mathbb{Z}$, tenemos que $k, \ell \in \mathbb{Z}$. Por lo tanto, x - y se puede escribir como suma de un número entero y un múltiplo entero de $\sqrt{2}$. Esto muestra que $x - y \in A$ (1,5 pts por mostrar que $x - y \in A$), por lo que se concluye que (A, +) es un subgrupo de $(\mathbb{R}, +)$ (0,5 pts por concluir que (A, +) es un subgrupo).

Segunda forma (demostrando directamente que es un grupo por definición): Debemos ver que $A \subseteq \mathbb{R}$, que (A, +) es una estructura algebraica, que la operación es asociativa, que tiene neutro y que todo elemento tiene inverso en (A, +).

Tenemos que $A \subseteq \mathbb{R}$ (0,5 pts por decir que $A \subseteq \mathbb{R}$). En efecto, $n + m\sqrt{2}$ es un número real si $n, m \in \mathbb{Z}$.

Sigamos demostrando que (A,+) es una estructura algebraica, es decir, que + es una ley de composición interna en A. Sean $x,y\in A$; debemos demostrar que $x+y\in A$. Como $x,y\in A$, existen $n,m,p,q\in\mathbb{Z}$ tales que $x=n+m\sqrt{2}$ e $y=p+q\sqrt{2}$. Luego,

$$x + y = (n + m\sqrt{2}) + (p + q\sqrt{2})$$
 $(x = n + m\sqrt{2}, y = p + q\sqrt{2})$ $(n+p) + (m+q)\sqrt{2}$ (Artimética de números reales)

Definiendo entonces k=n+p y $\ell=m+q$, se tiene que $x+y=k+\ell\sqrt{2}$. Como $n,m,p,q\in\mathbb{Z}$, tenemos que $k,\ell\in\mathbb{Z}$. Por lo tanto, x+y se puede escribir como suma de un número entero y un múltiplo entero de $\sqrt{2}$. Esto muestra que $x+y\in A$, por lo que (A,+) es una estructura algebraica (0,5 pts por demostrar que (A,+) es una estructura algebraica).

Veamos ahora que (A, +) es asociativa. Esto es directo de que la suma es asociativa en los números reales, pues $A \subseteq \mathbb{R}$ (0,5 pts por decir que + es asociativa).

Continuamos demostrando que existe un neutro en (A, +). Notemos que, si tomamos n = 0 y m = 0 en la definición de A, obtenemos que $0 = 0 + 0\sqrt{2} \in A$. Además, sabemos que 0 es neutro

para la suma en los números reales, por lo que también es neutro para la suma en A, ya que $A \subseteq \mathbb{R}$ (0,5 pts por decir que 0 es el neutro de (A, +)).

Finalmente, veamos que todo elemento de A tiene inverso en A. Sea $x \in A$. Por definición de A, existen $n, m \in A$ tales que $x = n + m\sqrt{2}$. Luego, vemos que

$$-x = -(n + m\sqrt{2}) = -n - m\sqrt{2}.$$

Tomando k = -n y $\ell = -m$ obtenemos que $-x = k + \ell \sqrt{2}$. Como además $n, m \in \mathbb{Z}$, tenemos que $k, \ell \in \mathbb{Z}$, lo que muestra que -x se puede escribir como suma de un número entero y un múltiplo entero de $\sqrt{2}$. Así, concluimos que $-x \in A$. Finalmente, por aritmética de números reales, sabemos que x + (-x) = 0 y (-x) + x = 0, por lo que todo elemento de (A, +) tiene inverso en A (0,5 pts por demostrar que todo elemento tiene inverso en (A, +)).

Como demostramos todo lo necesario en la definición de grupo, concluimos que (A, +) es un grupo. Como además $A \subseteq \mathbb{R}$, tenemos que (A, +) es un subgrupo de $(\mathbb{R}, +)$ (0,5 pts por concluir que (A, +) es un subgrupo.

Indicaciones corrección.

- No es necesario que justifiquen detalladamente que A no es vacío o que $A \subseteq \mathbb{R}$. Es suficiente con que lo digan.
- No es necesario que justifiquen detalladamente la aritmética de números reales o hechos como que, si n, m son enteros, entonces -n, n-m y n+m son enteros. Basta con que afirmen que es verdadero. En ambas demostraciones los últimos 0,5 puntos son ya sea por concluir, o por especificar el método completo que usaron (aun cuando alguna parte intermedia esté mal justificada).
- ii) (1 pto.) Se define ahora $B=\{n+m\sqrt{2}\ |\ n,m\in\mathbb{N}\}\subseteq A.$ ¿Es (B,+) un subgrupo de $(\mathbb{R},+)$? Justifique.

Solución:

La estructura algebraica (B,+) no es un subgrupo de $(\mathbb{R},+)$ (0,3 pts por decir que (B,+) no es un subgrupo), ya que no todos los elementos tienen inverso. Para corroborar esto, notemos que $(n+m\sqrt{2})+(-n-m\sqrt{2})=0$ y como el inverso es único, $-n-m\sqrt{2}$ es el inverso de $n+m\sqrt{2}$. Luego, por ejemplo, para $\sqrt{2}=0+1\cdot\sqrt{2}\in B$, su inverso es $-\sqrt{2}\notin B$.

Alternativamente, se puede argumentar que, salvo cuando m = n = 0, se tiene que $n + m\sqrt{2} > 0$. Como los inversos de números positivos son negativos, el único elemento en B con inverso es el 0. (0,7 pts por argumentar correctamente que (B, +) no es un subgrupo).

Indicaciones corrección.

- Tener en cuenta que B es cerrado bajo la suma y que la operación es asociativa, ya que lo es en \mathbb{R} . Además contiene al neutro, ya que $0 = 0 + 0\sqrt{2}$. Por tanto, lo único que falla es la existencia de inversos.
- No es necesario que justifiquen que $-n m\sqrt{2}$ es el inverso de $n + m\sqrt{2}$ si es que lo hicieron en el ítem anterior.
- Basta que encuentren un elemento sin inverso (no necesitan decir que todos los elementos excepto el 0 tienen inverso).
- b) (2 pts.) Sea P un conjunto numerable. Demuestre que $P \times \{1, 2, 3, 4, 5\}$ es numerable.

Solución: Primera forma (por enumeración directa): Sea p_0, p_1, p_2, \ldots una enumeración de P, que existe porque P es numerable. Se tiene que la siguiente es una enumeración de $P \times \{1, 2, 3, 4, 5\}$:

$$(p_{0},1), (p_{0},2), (p_{0},3), (p_{0},4), (p_{0},5),$$

$$(p_{1},1), (p_{1},2), (p_{1},3), (p_{1},4), (p_{1},5),$$

$$(p_{2},1), (p_{2},2), (p_{2},3), (p_{2},4), (p_{2},5),$$

$$\vdots$$

$$(p_{n},1), (p_{n},2), (p_{n},3), (p_{n},4), (p_{n},5),$$

$$(p_{n+1},1), (p_{n+1},2), (p_{n+1},3), (p_{n+1},4), (p_{n+1},5),$$

$$\vdots$$

(1,8 pts por mostrar una enumeración correcta).

Como la lista anterior es una enumeración y es infinita, concluimos que $P \times \{1, 2, 3, 4, 5\}$ es numerable (0,2 pts por justificar que esto es suficiente para mostrar que P es numerable).

Segunda forma (usando que $\mathbb{N} \times \mathbb{N}$ es numerable): Tenemos que $P \times \{1, 2, 3, 4, 5\}$ es infinito (0,3 pts por decir que P es infinito) porque contiene al conjunto $P \times \{1\}$. Este conjunto es numerable, pues la función $f \colon P \to P \times \{1\}$ dada por f(p) = (p,1) es biyectiva (0,3 pts por argumentar correctamente que P es infinito). Así, $|P \times \{1, 2, 3, 4, 5\}| \ge |\mathbb{N}|$, ya que $|\mathbb{N}|$ es el cardinal infinito más pequeño. (0,3 pts por esta desigualdad).

Por otro lado, se tiene que $P \times \{1,2,3,4,5\} \subseteq P \times \mathbb{N}$ (0,3 pts por la inclusión). Como $|P \times \mathbb{N}| = |\mathbb{N}|$ porque el producto finito de conjuntos numerables es numerable (0,3 pts por justificar que $\mathbb{N} \times \mathbb{N}$ es numerable), concluimos que $|P \times \{1,2,3,4,5\}| \leq |\mathbb{N}|$ (0,3 pts por esta desigualdad). Finalmente, por el teorema de Cantor-Bernstein-Schröder, se deduce que $|P \times \{1,2,3,4,5\}| = |\mathbb{N}|$. Así, $P \times \{1,2,3,4,5\}$ es numerable (0,2 pts por concluir correctamente).

Tercera forma (usando que unión finita de conjuntos numerables es numerable): Si $m \in \{1, 2, 3, 4, 5\}$, tenemos que la función $f: P \to P \times \{m\}$ dada por f(p) = (p, m) es biyectiva, por lo que $|P \times \{m\}| = |\mathbb{N}|$ (0,5 pts por esta igualdad). Además,

$$P \times \{1,2,3,4,5\} = \bigcup_{m \in \{1,2,3,4,5\}} P \times \{m\},$$

(1,0 pto por esta igualdad) de donde se concluye que $P \times \{1,2,3,4,5\}$ es numerable porque la unión finita de conjuntos numerables es, a su vez, numerable (0,5 pts por concluir correctamente).

Cuarta forma (construyendo una biyección explícita): Sea $f: \mathbb{N} \to P$ una función biyectiva, que existe porque P es numerable (0,2 pts por tomar una función biyectiva). Tomemos la función $g: \mathbb{N} \to P \times \{1, 2, 3, 4, 5\}$ dada por

$$g(n) = \begin{cases} \left(f\left(\left\lfloor \frac{n}{5} \right\rfloor \right), 1 \right) & \text{si } [n]_5 = [0]_5 \\ \left(f\left(\left\lfloor \frac{n}{5} \right\rfloor \right), 2 \right) & \text{si } [n]_5 = [1]_5 \\ \left(f\left(\left\lfloor \frac{n}{5} \right\rfloor \right), 3 \right) & \text{si } [n]_5 = [2]_5 \\ \left(f\left(\left\lfloor \frac{n}{5} \right\rfloor \right), 4 \right) & \text{si } [n]_5 = [3]_5 \\ \left(f\left(\left\lfloor \frac{n}{5} \right\rfloor \right), 5 \right) & \text{si } [n]_5 = [4]_5. \end{cases}$$

(1,5 pts mostrar una función biyectiva correcta) Esta función es biyectiva, por lo que $|\mathbb{N}| = |P \times \{1, 2, 3, 4, 5\}|$. Así, $P \times \{1, 2, 3, 4, 5\}$ es numerable (0,3 pts por concluir correctamente).

Indicaciones corrección.

• En la primera forma no es necesario que enumeren de esa manera, incluso un diagrama que especifique como se enumeraron los elementos tiene puntaje completo.

- No es necesario citar el teorema de Cantor-Bernstein-Schröder directamente, sino que basta decir "por teorema/propiedad del apunte".
- Es posible combinar varias formas. Por ejemplo, en la segunda o tercera forma pueden demostrar que $P \times \{1\}$ o $P \times \{m\}$ son numerables por enumeración directa en vez de exhibiendo una función biyectiva. Esto también es correcto.
- **P2.** a) Sea (H, \triangle) una estructura algebraica asociativa y con neutro $e \in H$. Sea H^* el conjunto de los elementos de H que tienen inverso para \triangle , es decir,

$$H^* = \{ h \in H \mid \exists u \in H, (h \triangle u = e) \land (u \triangle h = e) \}.$$

Se sabe (no lo demuestre) que (H^*, Δ) es una estructura algebraica asociativa. (2 pts.) Demuestre que (H^*, Δ) es un grupo.

Solución: Debemos demostrar que (H^*, \triangle) cumple con la definición de grupo. Como ya sabemos que (H^*, \triangle) es una estructura algebraica asociativa, solo resta probar que tiene neutro, y que todo elemento tiene inverso (0,2 pts por identificar qué falta por demostrar).

Como $e \in H$ es neutro de (H, \triangle) , basta ver que $e \in H^*$. Esto es verdadero porque e tiene inverso en (H, \triangle) . En efecto, $e \triangle e = e$, porque e es neutro (0,9 pts por mostrar que $e \in H^*$).

Finalmente, debemos ver que todo elemento de (H^*, \triangle) tiene inverso en (H^*, \triangle) . Si $h \in H^*$, por definición de H^* , existe $u \in H$ tal que $h \triangle u = e$ y $u \triangle h = e$. Es suficiente entonces demostrar que $u \in H^*$. Esto es verdadero porque u también tiene inverso en (H, \triangle) . En efecto, las mismas ecuaciones $h \triangle u = e$ y $u \triangle h = e$ muestran que h es inverso de u. Concluimos que todo elemento de (H^*, \triangle) tiene inverso en (H^*, \triangle) (0,9 pts por mostrar que todo elemento en H^* tiene inverso en H^*).

Luego (H^*, \triangle) cumple con la definición de grupo.

Indicaciones corrección.

- No es necesario justificar detalladamente que si u es inverso de h en (H, \triangle) , entonces h es inverso de u en (H, \triangle) . Es suficiente con que lo digan sin mayor justificación.
- Usar la caracterización de subgrupo es erróneo. Sin embargo, si en el camino demuestran que el inverso de u está en H^* , entonces asignar el puntaje por demostrar que todo elemento de u tiene inverso.
- b) Sea $(\mathbb{Z} \times \mathbb{Z}, +)$ la estructura algebraica definida por

$$(a,b) + (c,d) = (a+c,b+d),$$

para todo $(a,b),(c,d) \in \mathbb{Z} \times \mathbb{Z}$. Se sabe que $(\mathbb{Z} \times \mathbb{Z},+)$ es un grupo abeliano con neutro (0,0) y tal que el inverso de $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ es -(a,b) = (-a,-b) (no lo demuestre).

Considere la función $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_{30}$ dada por $f(a, b) = [6(a + b)]_{30}$.

i) (2 pts.) Demuestre que f es un homomorfismo de $(\mathbb{Z} \times \mathbb{Z}, +)$ en $(\mathbb{Z}_{30}, +_{30})$.

Solución: Veamos que f es un un homomorfismo. Tenemos que, dados $(a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}$,

$$f((a,b)+(c,d)) = f(a+c,b+d)$$
 (Definición de $(\mathbb{Z} \times \mathbb{Z},+)$ – **0,5 pts**)
$$= [6(a+c+b+d)]_{30}$$
 (Definición de f – **0,5 pts**)
$$= [6a+6c+6b+6d]_{30}$$
 (Distributividad en \mathbb{Z})
$$= [6a+6b+6c+6d]_{30}$$
 (Conmutatividad en $(\mathbb{Z},+)$)
$$= [6(a+b)+6(c+d)]_{30}$$
 (Distributividad en \mathbb{Z})
$$= [6(a+b)]_{30} +_{30} [6(c+d)]_{30}$$
 (Definición de $(\mathbb{Z}_{30},+_{30})$ – **0,5 pts**)
$$= f(a,b) +_{30} f(c,d).$$
 (Definición de f – **0,5 pts**)

Indicaciones corrección.

- No es necesario que justifiquen en detalle la aritmética en $(\mathbb{Z}, +, \cdot)$. Basta con que usen que 6(a+c+b+d) = 6(a+b) + 6(c+d) directamente.
- Asignar al menos
- ii) (2 pts.) Sea $L = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid f(a,b) = [0]_{30}\}$. Demuestre que (L,+) es un subgrupo de $(\mathbb{Z} \times \mathbb{Z},+)$.

Solución: Primera forma (usando el teorema de caracterización de subgrupos): Se tiene que L no es vacío porque, por ejemplo, (0,0) pertenece a este conjunto (0,4 pts por mostrar que L no es vacío). En efecto, $f(0,0) = [6(0+0)]_{30} = [0]_{30}$. Además, L es un subconjunto de $\mathbb{Z} \times \mathbb{Z}$ por definición (0,4 pts por decir que L es un subconjunto de $\mathbb{Z} \times \mathbb{Z}$).

Como $(\mathbb{Z} \times \mathbb{Z}, +)$ es un grupo, podemos usar el teorema de caracterización de subgrupos para demostrar que (L, +) es un subgrupo de $(\mathbb{Z} \times \mathbb{Z}, +)$. En efecto, usando el teorema, se debe demostrar que, dados $(a, b), (c, d) \in L$, entonces $(a, b) + (-(c, d)) \in L$ para obtener que (L, +) es un subgrupo de $(\mathbb{Z} \times \mathbb{Z}, +)$ (0,2 pts por identificar qué se debe demostrar).

Sean entonces $(a, b), (c, d) \in L$. Como f es un homomorfismo por la parte anterior, se tiene que

$$f((a+b)+(-(c,d))) = f(a,b) +_{30} f(-(c,d)) \qquad (f \text{ es un homomorfismo} - \textbf{0,3 pts})$$

$$= f(a,b) +_{30} (-f(c,d)) \qquad (Los homomorfismos envían inversos en inversos - \textbf{0,3 pts})$$

$$= [0]_{30} +_{30} (-[0]_{30}) \qquad (f(a,b) = [0]_{30} \text{ y } f(c,d) = [0]_{30} - \textbf{0,2 pts})$$

$$= [0]_{30}. \qquad (-[0]_{30} \text{ es el inverso de } [0]_{30} \text{ en } (\mathbb{Z}_{30}, +_{30}) - \textbf{0,2 pts})$$

Así, vemos que $f((a+b)+(-(c,d))=[0]_{30}$, por lo que $(a,b)+(-(c,d))\in L$. Concluimos que (L,+) es un subgrupo de $(\mathbb{Z}\times\mathbb{Z},+)$.

Alternativamente, es posible demostrar esto último repitiendo cálculos de la parte i). En efecto, como (a,b)+(-(c,d))=(a-c,b-d), hay que demostrar que $(a-c,b-d)\in L$. Así,

```
f(a-c, b-d) = [6(a-c+b-d)]_{30}
                                                                                             (Definición de f - \mathbf{0,2} pts)
                    = [6a - 6c + 6b - 6d)]_{30}
                                                                                                    (Distributividad en \mathbb{Z})
                     = [6a + 6b - 6c - 6d)]_{30}
                                                                                                   (Conmutatividad en \mathbb{Z})
                     = [6(a+b) + (-6(c+d))]_{30}
                                                                                                    (Distributividad en \mathbb{Z})
                     = [6(a+b)]_{30} +_{30} [-6(c+d)]_{30}
                                                                                (Definición de (\mathbb{Z}_{30}, +_{30}) - \mathbf{0,1} pts)
                     = [6(a+b)]_{30} +_{30} (-[6(c+d)]_{30}) (-[x]_{30} = [-x]_{30} \text{ en } (\mathbb{Z}_{30}, +_{30}) - \mathbf{0.2 pts})
                     = f(a,b) +_{30} (-f(c,d))
                                                                                             (Definición de f - \mathbf{0.2} pts)
                     = [0]_{30} +_{30} (-[0]_{30})
                                                                                            ((a,b),(c,d) \in L - \mathbf{0,2} \text{ pts})
                                                        (-[0]_{30} \text{ es el inverso de } [0]_{30} \text{ en } (\mathbb{Z}_{30}, +_{30}) - \mathbf{0,1} \text{ pts})
                     = [0]_{30}.
```

Esto también demuestra que $(a,b) + (-(c,d)) \in L$, por lo que se concluye también que (L,+) es un subgrupo de $(\mathbb{Z} \times \mathbb{Z},+)$.

Segunda forma (demostrando directamente que es un grupo por definición): Debemos demostrar que $L \subseteq \mathbb{Z} \times \mathbb{Z}$ y que (L, +) cumple con la definición de grupo. Para hacer esto último hay que ver que (L, +) es una estructura algebraica con una operación asociativa, que admite un neutro y que tiene inversos para todo elemento (0,2 pts por identificar qué se debe demostrar).

Justifiquemos primero que $L \subseteq \mathbb{Z} \times \mathbb{Z}$. Esto es verdadero por definición, pues L consiste en los elementos de $\mathbb{Z} \times \mathbb{Z}$ que cumplen una propiedad adicional (0,2 pts por justificar la inclusión).

Continuemos demostrando que (L,+) es una estructura algebraica, es decir, que + es una ley de composición interna en L. Sean $(a,b),(c,d)\in L$; debemos demostrar que $(a,b)+(c,d)\in L$. Por definición de L, sabemos que $f(a,b)=[0]_{30}$ y que $f(c,d)=[0]_{30}$. Se necesita comprobar que $f((a,b)+(c,d))=[0]_{30}$. Para esto, podemos notar que

$$f((a,b) + (c,d)) = f(a,b) +_{30} f(c,d)$$
 (f es un homomorfismo – **0,3 pts**)
= $[0]_{30} +_{30} [0]_{30}$ (f $(a,b) = [0]_{30}$ y $f(c,d) = [0]_{30}$ – **0,1 pts**)
= $[0]_{30}$. ([0]₃₀ es el neutro de ($\mathbb{Z}_{30}, +_{30}$) – **0,1 pts**)

Alternativamente, es posible usar que (a,b)+(c,d)=(a+b,c+d) y repetir los cálculos de la parte i) para demostrar que $f(a+b,c+d)=f(a,b)+_{30}f(c,d)=[0]_{30}+_{30}[0]_{30}=[0+0]_{30}=[0]_{30}$ (0,5 pts por demostrar que (L,+)) es una estructura algebraica.

Continuamos viendo que (L, +) es asociativa. Esto es verdadero porque $(\mathbb{Z} \times \mathbb{Z}, +)$ es asociativa y $L \subseteq \mathbb{Z} \times \mathbb{Z}$ (0,3 pts por justificar que (L, +) es asociativa).

Veamos ahora que la estructura (L, +) admite un neutro. Como (0, 0) es el neutro de $(\mathbb{Z} \times \mathbb{Z}, +)$ y $L \subseteq \mathbb{Z} \times \mathbb{Z}$, basta ver que $(0, 0) \in L$. Esto es verdadero porque $f(0, 0) = [6(0 + 0)]_{30} = [0]_{30}$ (0,3 pts por demostrar que (L, +) tiene neutro).

Finalmente, veamos que (L, +) admite inversos. Sea $(a, b) \in L$; tenemos que $f(a, b) = [0]_{30}$. Como f es un homomorfismo y los homomorfismos envían inversos en inversos, tenemos que $f(-(a, b)) = -f(a, b) = -[0]_{30} = [-0]_{30} = [0]_{30}$. Por lo tanto, $-(a, b) \in L$, lo que muesta que todo elemento de L tiene inverso en (L, +) (0,5 pts por demostrar que todo elemento en (L, +) tiene inverso).

Alternativamente, como -(a,b)=(-a,-b), debemos demostrar que $(-a,-b)\in L$. Así,

$$f(-(a,b)) = f(-a,-b) \qquad (-(a,b) = (-a,-b))$$

$$= [6((-a) + (-b)]_{30} \qquad (\text{Definición de } f - \mathbf{0}, \mathbf{1} \text{ pts})$$

$$= [-6(a+b)]_{30} \qquad (\text{Aritmética de números enteros})$$

$$= -[6(a+b)]_{30} \qquad (-[x]_{30} = [-x]_{30} \text{ en } (\mathbb{Z}_{30}, +_{30}) - \mathbf{0}, \mathbf{1} \text{ pts})$$

$$= -f(a,b) \qquad (\text{Definición de } f - \mathbf{0}, \mathbf{1} \text{ pts})$$

$$= -[0]_{30} \qquad (f(a,b) = [0]_{30} - \mathbf{0}, \mathbf{1} \text{ pts})$$

$$= [-0]_{30} \qquad (-[x]_{30} = [-x]_{30} \text{ en } (\mathbb{Z}_{30}, +_{30}))$$

$$= [0]_{30}. \qquad (-0 = 0 \text{ en } \mathbb{Z} - \mathbf{0}, \mathbf{1} \text{ pts por llegar a} [\mathbf{0}]_{30})$$

Concluimos entonces que $f(-a, -b) = [0]_{30}$, por lo que $(-a, -b) \in L$ y, así, todo elemento tiene inverso en (L, +). Por lo tanto, como vimos que $L \subseteq \mathbb{Z} \times \mathbb{Z}$ y que (L, +) es un grupo, tenemos que (L, +) es un subgrupo de $(\mathbb{Z} \times \mathbb{Z}, +)$.

Indicaciones corrección.

■ Es posible hacer más cálculos de lo necesario, pero esto también es correcto. Por ejemplo,

$$[0]_{30} +_{30} (-[0]_{30}) = [0]_{30} +_{30} [-0]_{30} = [0]_{30} +_{30} [0]_{30} = [0+0]_{30} = [0]_{30},$$

en vez de decir que $(-[0]_{30})$ es el inverso de $[0]_{30}$, sirve para probar que $[0]_{30} +_{30} (-[0]_{30}) = [0]_{30}$.

■ No debe haber descuento por no justificar los pasos de aritmética en $(\mathbb{Z},+)$, $(\mathbb{Z} \times \mathbb{Z},+)$ o $(\mathbb{Z}_{30},+_{30})$, pero sí debe descontarse 0,3 puntos por no justificar cada vez que se usa que f es un homomorfismo.

Duración: 1h 30'.