CONTROL 3

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique las hipótesis.

P1. Definimos el conjunto

$$A = \{X \subseteq \mathbb{N} \mid X \text{ es finito}\} \subset \mathcal{P}(\mathbb{N}).$$

a) (1.5 pts.) Demostrar que

$$A = \bigcup_{k \in \mathbb{N}} A_k,$$

donde
$$A_k = {\mathbb{N} \choose k} = \{Y \subseteq \mathbb{N} \mid |Y| = k\}.$$

Solución

Procedemos por contenciones.

 \subseteq : Sea $X \in A$ un elemento arbitrario. Tenemos que $X \subseteq \mathbb{N}$, y por tanto $X \in A_k$ para k = |X|. Luego $X \in \bigcup_{k \in \mathbb{N}} A_k$. Como X se tomó arbitrario, concluimos que

$$A \subseteq \bigcup_{k \in \mathbb{N}} A_k$$
.

 $\dots 0.8$ pts.

 \supseteq : Para $k \in \mathbb{N}$ arbitrario, tenemos que A_k es la familia de subconjuntos de \mathbb{N} de tamaño k, por lo que cada elemento de A_k es finito, y por tanto $A_k \subseteq A$. Adicionalmente, como esto se cumple para $k \in \mathbb{N}$ arbitrario, tenemos que

$$\bigcup_{k\in\mathbb{N}} A_k \subseteq A.$$

 $\dots 0.7$ pts.

b) (2.5 pts.) Demostrar que A_0 es finito y que para cada $k \in \mathbb{N} \setminus \{0\}$, A_k es numerable.

Tenemos que $A_0 = \{Y \subseteq \mathbb{N} \mid |Y| = 0\}$, por lo que $A_0 = \{\emptyset\}$, así que A_0 es finito. 0.5 pts.

Ahora vamos a mostrar que para cada $k \in \mathbb{N} \setminus \{0\}$, A_k es numerable.

Definimos una función $f: \mathbb{N} \to A_k$ donde $f(n) = \{n, n+1, \ldots, n+k-1\}$. Veámos que f es inyectiva. Para $n, m \in \mathbb{N}$ con $n \neq m$, tenemos que $f(n) = \{n, n+1, \ldots, n+k-1\}$ y $f(m) = \{m, m+1, \ldots, m+k-1\}$, y como $n \neq m$, entonces $f(n) \neq f(m)$. Se concluye que f es inyectiva, y por el resultado del apunte tenemos que $|A_k| \geq |\mathbb{N}|$, y como \mathbb{N} es un conjunto infinito (demostrado en clase), tenemos que A_k es infinito. 0.5 pts. por mostrar que A_k es infinito

Para ver que A_k es numerable, definimos la función $f_k: A_k \to \mathbb{N}^k$, donde

$$f_k(\{x_1,\ldots,x_k\}) = (x_1,\ldots,x_k).$$

Veámos que f_k es inyectiva. Sean $X = \{x_1, \dots, x_k\}, X' = \{x'_1, \dots, x'_k\} \in A_k$ arbitrarios con $X \neq X'$. Entonces existe $i \in [k]$ tal que $x_i \neq x'_i$. Entonces

$$f_k(X) = (x_1, \dots, x_k) \neq (x'_1, \dots, x'_k) = f_k(X').$$

Por tanto, f_k es inyectiva......1 pt. por determinar una función inyectiva de A_k a un conjunto numerable

Por definición del cardinal de conjuntos, tenemos que $|A_k| \leq |\mathbb{N}^k|$, y dado que \mathbb{N}^k es numerable, tenemos que $|A_k| \leq |\mathbb{N}^k| = |\mathbb{N}|$, así que A_k es numerable.0.5 pts. por mostrar que A_k es numerable

c) (1 pt.) Aplicar un resultado conocido para demostrar que A es numerable.

Solución

Tenemos que A_0 es finito y A_k es numerable para cada $k \in \mathbb{N} \setminus \{0\}$, y por el primer inciso tenemos que $A = \bigcup_{k \in \mathbb{N}} A_k$. Luego, A es la unión numerable de conjuntos numerables y un conjunto finito, y por el resultado del apunte tenemos que A es numerable. ... 1 pt.

d) (1 pt.) Decida si $B = \{X \subseteq \mathbb{N} \mid X \text{ es infinito}\}$ es numerable.

Solución

B no es numerable, ya que, si lo fuera, entonces $\mathcal{P}(\mathbb{N}) = A \cup B$ sería numerable pues A es numerable. Pero sabemos que, en general, $|E| < |\mathcal{P}(E)|$ por lo que $\mathcal{P}(\mathbb{N})$ no es numerable. 1 pt.

P2.

a) Sea $\mathcal{F} = \mathbb{R}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{R} \mid f \text{ es función}\}$. Definimos la ley de composición * en \mathcal{F} de la siguiente manera: Dados $f, g \in \mathcal{F}$,

$$(f * g)(n) = \sum_{i=0}^{n} f(i)g(n-i) \qquad \forall n \in \mathbb{N}.$$

a.1) (1 pt.) Demuestre que * es conmutativa.

Tomamos $f,g\in\mathcal{F}$ y $n\in\mathbb{N}$ elementos arbitrarios. Utilizando cambio de índices $i\mapsto n-i$, y utilizando que el producto en \mathbb{R} es conmutativo, tenemos que

$$(f*g)(n) = \sum_{i=0}^{n} f(i)g(n-i) = \sum_{i=0}^{n} f(n-i)g(n-(n-i)) = \sum_{i=0}^{n} f(n-i)g(i) = (g*f)(n).$$

Se concluye que * es conmutativa.0.5 pts. por hacer cambio de índices correctamente, y 0.5 pts. conmutar el producto $f(n-i)g(i) \in \mathbb{R}$.

a.2) (2 pts.) Determinar si $(\mathcal{F},*)$ admite neutro, y en caso afirmativo, determínelo.

Solución

Se debe encontrar un elemento $e \in \mathcal{F}$ que actúe como neutro, si existe. Tal e debe cumplir que f * e = f para toda función $f \in \mathcal{F}$, es decir, e debe cumplir para todo $n \in \mathbb{N}$ que (f * e)(n) = f(n).....0.5 pts. por enunciar correctamente las condiciones que debe cumplir el neutro

Explícitamente

$$(f * e)(n) = \sum_{i=0}^{n} f(i)e(n-i) = f(0)e(n) + f(1)e(n-1) + \dots + f(n)e(0) = f(n),$$

0.5 pts. por lo tanto, elegimos e tal que e(0) = 1 y e(n) = 0 para todo $n \in \mathbb{N}^*$. Concluímos que el neutro existe y está definido de la siguiente manera:

$$e(n) = \begin{cases} 1 & \text{si } n = 0, \\ 0 & \text{en otro caso.} \end{cases}$$

.....1 pt. por demostrar la existencia del neutro y determinarlo.

b) Para el anillo $(\mathbb{Z}_n, +_n, \cdot_n)$ se define el conjunto de elementos invertibles

$$\mathbb{Z}_n^* = \{ [a]_n \in \mathbb{Z}_n \mid \text{existe } [b]_n \text{ tal que } [a]_n \cdot_n [b]_n = [1]_n \}.$$

Asuma que $(\mathbb{Z}_9^*, \cdot_9)$ es grupo.

b.1) (1 pt.) Demuestre que $[2]_9 \in \mathbb{Z}_9^*$ y que $[3]_9 \notin \mathbb{Z}_9^*$.

Solución

La clase $[2]_9$ satisface $[2]_9^6 = [1]_9$ y por lo tanto es invertible con inverso $[2]_9^5 = [5]_9$. Esto implica que $[2]_9^2 = [4]_9$, $[2]_9^3 = [8]_9$, $[2]_9^4 = [7]_9$ son invertibles con inversos $[2]_9^4$, $[2]_9^3$, $[2]_9^2$ respectivamente **0.5pts**. Por otra parte, $[3]_9$ no es invertibles pues es divisor de cero: $[3]_9^2 = [9]_9 = [0]_9$, de donde se concluye lo pedido **0.5pts**.

b.2) (1 pt.) Pruebe que $H = \{[1]_9, [8]_9\}$ es subgrupo de $(\mathbb{Z}_9^*, \cdot_9)$ y que $A = \{[1]_9, [2]_9, [4]_9, [8]_9\}$ no lo es.

Por la caracterización de subgrupo tenemos que $H \neq \emptyset$ es subgrupo si y solo si $[8]_9^{-1} \in H$ pues en el producto $x \cdot_9 y^{-1}$, x oy es $[1]_9$. Así, H es subgrupo ya que $[8]_9^{-1} = [8]_9 \in H$, pues $[8]_9 \cdot_9 [8]_9 = [8 \cdot 8]_9 = [64]_9 = [1 + 9 \cdot 7]_9 = [1]_9$. **0.5pts.** Por otra parte, A no es subgrupo $[2]_9 \cdot_9 [8]_9 = [16]_9 = [7]_9 \notin A$. **0.5pts.**

b.3) (1 pt.) Encuentre las traslaciones [8] $_9 \cdot_9 H$, [2] $_9 \cdot_9 H$ y [4] $_9 \cdot_9 H$ del subgrupo H del item anterior.

Solución

Notemos que, si $a \in H$, entonces su traslación queda igual, es decir, $a \cdot_9 H = H$ para $a = [1]_9, [8]_9$ **0.4pts.** Por otra parte, $[2]_9 \cdot_9 H = \{[2]_9 \cdot_9 [1]_9, [2]_9 \cdot_9 [8]_9\} = \{[2]_9, [7]_9\}$ **0.3pts.** Finalmente $[4]_9 \cdot_9 H = \{[4]_9, [4 \cdot 8]_9\} = \{[4]_9, [5]_9\}$ **0.3pts.**

P3. Considere un conjunto X con más de un elemento y el anillo $R = (\mathcal{P}(X), +, \cdot)$, donde

$$A + B := A\Delta B = A \setminus B \cup B \setminus A = (A \cup B) \setminus (A \cap B)$$
 y $A \cdot B = A \cap B$.

Por otra parte, considere el anillo $S = \mathbb{Z}_2^X$, es decir, $S = \{f : X \to \mathbb{Z}_2 \mid f \text{ función}\}$, con la suma y producto heredadas del anillo $(\mathbb{Z}_2, +_2, \cdot_2)$, es decir, si $f, g \in S$ entonces $f + g : X \to \mathbb{Z}_2$ y $f \cdot g : X \to \mathbb{Z}_2$ se definen mediante

$$(f+g)(x) := f(x) +_2 g(x), y (f \cdot g)(x) = f(x) \cdot_2 g(x).$$

a) Pruebe que la función $\varphi:R\to S,$ dada por $\varphi(A)=\chi_{\scriptscriptstyle A},$ donde

$$\chi_A(x) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{si } x \notin A \end{cases},$$

es un isomorfismo de anillos, es decir, pruebe que

- a.1) (1.8 pts.) φ es homomorfismo de anillos.
- a.2) (1.2 pts.) φ es biyectiva.

- a.1) Debemos probar que:
 - i) $\varphi(A+B) = \varphi(A) + \varphi(B)$, es decir, que $\chi_{A\Delta B} = \chi_A +_2 \chi_B$, para todo $A, B \in \mathcal{P}(X)$.

 0.3pts.
 - ii) $\varphi(A \cdot B) = \varphi(A) \cdot \varphi(B)$, es decir, que $\chi_{A \cap B} = \chi_A \cdot_2 \chi_B$, para todo $A, B \in \mathcal{P}(X)$.

 0.3pts.
- iii) $\varphi(1_R) = 1_S$, es decir, que χ_X es la función constante igual a 1. 0.3pts.

Para probar las igualdades de funciones basta probar que las imágenes de elementos del dominio son iguales ya que es claro que las funciones involucradas tienen igual dominio y codominio.

Veamos, para i) notamos que $\chi_{A\Delta B}(x) = \chi_A(x) = \chi_B(x) = 0$ si $x \in (A \cup B)^c$ y que, para $x \in A \cup B$ la única manera de que $\chi_A(x) = \chi_B(x) = 1$ es que $x \in A \cap B$ y, en tal caso, $\chi_A(x) +_2 \chi_B(x) = 1 +_2 1 = 0 = \chi_{A\Delta B}(x)$, de donde se concluye la igualdad de las funciones. **0.3pts**.

Para probar ii) notamos que la única manera de que $\chi_A(x) \cdot_2 \chi_B(x) = 0$ es que $\chi_A(x) = 0$ o que $\chi_B(x) = 0$, es decir, que $x \notin A$ o $x \notin B$, equivalentemente, que $x \in (A \cap B)^c$, de donde se sigue la igualdad de las funciones. 0.3pts.

Es claro que se cumple iii) pues $\chi_X(x) = 1$ si y solo si $x \in X$, lo cual es cierto pues X es el dominio de las funciones en S. 0.3pts.

- a.2) Debemos probar que:
 - i) φ es inyectiva, lo cual equivale a probar que $\varphi(A) = \chi_A = 0_S \Rightarrow A = \emptyset (= 0_R)$.

 0.3pts.
 - ii) φ es epiyectiva, es decir, si $f: X \to \mathbb{Z}_2$ es función, entonces $f = \chi_A$, para algún $A \in \mathcal{P}(X)$. 0.3pts.

La inyectividad se desprende directamente de la caracterización arriba ya que $\chi_A(x) = 0$ para todo $x \in X$ si y solo si, para todo $x \in X$ se tiene que $x \notin A$, lo cual ocurre si y solo si $A = \emptyset$. 0.3pts.

Finalmente, φ es epiyectiva pues si $f: X \to \mathbb{Z}_2$, entonces $f = \chi_A$, donde $A = \{x \in X \mid f(x) = 1\}$. 0.3pts.

- b) Sea $A \neq \emptyset$ subconjunto de X.
 - b.1) (2 pts.) Pruebe que A es divisor de cero en R si y solo si $\varphi(A)$ es divisor de cero en S.
 - b.2) (1 pt.) Considere $Y = \{x\} \subset X$. Use que $Y \cap X \setminus Y = \emptyset$ y el item anterior para encontrar dos divisores de cero en S.

- b.1) Procedemos por doble implicancia.
- \Rightarrow : Si A es divisor de cero en R, existe $B \neq 0_R$ tal que $A \cdot B = 0_R$ **0.3pts.**, esto implica que $\varphi(A \cdot B) = \varphi(A) \cdot \varphi(B) = \varphi(0_R) = 0_S$ pues φ es homomorfismo de grupos (aditivos). **0.4pts.** Concluimos que $\varphi(A)$ es un divisor de cero pues $\varphi(A)$, $\varphi(B) \neq 0_S$ al ser φ inyectiva **0.3pts.**
- \Leftarrow : Si $\varphi(A)$ es divisor de cero en S, entonces existe $B \neq 0_S \in S$ tal que $\varphi(A) \cdot B = 0_S$ 0.3pts. Como φ es epiyectiva, $B = \varphi(\tilde{A})$, para algún $\tilde{A} \neq 0_R$ y se tiene que $\varphi(A)\varphi(\tilde{A}) = \varphi(A \cdot \tilde{A}) = 0_S$ 0.4pts. Concluimos que $A \cdot \tilde{A} = 0_R$ por la inyectividad de φ y así A es divisor de cero 0.3pts.
- b.2) Si $x \in X$ consideramos el conjunto $Y = \{x\} \neq \emptyset$. Como $X \setminus Y = Y^c \neq \emptyset$ si X tiene más de un elemento **0.5pts.**, se tiene que $Y \cdot Y^c = 0_R$ y por lo tanto $\varphi(Y) = \chi_Y$ y $\varphi(Y^c) = \chi_{Y^c}$ son divisores de cero en S. **0.5pts.**