

Control 3

P1. A partir de una relación \mathcal{R} en un conjunto A, se define una nueva relación $\mathcal{S}_{\mathcal{R}}$ en A mediante

$$\forall x, y \in A, \quad x\mathcal{S}_{\mathcal{R}}y \iff x\mathcal{R}y \land y\mathcal{R}x.$$

i) (1.5 ptos.) Demuestre que $\mathcal{S}_{\mathcal{R}}$ es una relación simétrica.

Solución:

Sean $x, y \in A$ cualquiera.

$$xS_{\mathcal{R}}y \iff x\mathcal{R}y \wedge y\mathcal{R}x$$
 (definición de $S_{\mathcal{R}}$)
 $\iff y\mathcal{R}x \wedge x\mathcal{R}y$ (conmutatividad del \wedge)
 $\iff yS_{\mathcal{R}}x$. (definición de $S_{\mathcal{R}}$)
(1.2 ptos)

Con esto $\forall x, y \in A, x \mathcal{S}_{\mathcal{R}} y \iff y \mathcal{S}_{\mathcal{R}} x$, y por lo tanto $\forall x, y \in A, x \mathcal{S}_{\mathcal{R}} y \Longrightarrow y \mathcal{S}_{\mathcal{R}} x$, que es la definición de simetría. (0.3 ptos)

ii) (1.5 ptos.) Demuestre que si \mathcal{R} es refleja y transitiva, entonces la nueva relación $\mathcal{S}_{\mathcal{R}}$ es de equivalencia.

Solución:

Hay que verificar que $\mathcal{S}_{\mathcal{R}}$ es refleja, simétrica y transitiva.

(0.3 ptos.)

De la parte i) ya se sabe que es Simétrica, veamos las otras dos propiedades.

(0.2 ptos.)

Refleja:

(0.5 ptos.)

Para $x \in A$ cualquiera, como \mathcal{R} es refleja, entonces $x\mathcal{R}x$. Luego también $x\mathcal{R}x \wedge x\mathcal{R}x$, así, por definición de $\mathcal{S}_{\mathcal{R}}$, $x\mathcal{S}_{\mathcal{R}}x$.

Transitiva: (0.5 ptos.)

Sean $x, y, z \in A$ cualquiera,

$$x\mathcal{S}_{\mathcal{R}}y \wedge y\mathcal{S}_{\mathcal{R}}z \iff x\mathcal{R}y \wedge y\mathcal{R}x \wedge y\mathcal{R}z \wedge z\mathcal{R}y \qquad \qquad \text{(definición de } \mathcal{S}_{\mathcal{R}})$$

$$\iff (x\mathcal{R}y \wedge y\mathcal{R}z) \wedge (z\mathcal{R}y \wedge y\mathcal{R}x) \qquad \qquad \text{(propiedades del } \wedge)$$

$$\implies x\mathcal{R}z \wedge z\mathcal{R}x \qquad \qquad \text{(transitividad de } \mathcal{S}_{\mathcal{R}})$$

$$\iff x\mathcal{S}_{\mathcal{R}}z. \qquad \qquad \text{(definición de } \mathcal{S}_{\mathcal{R}})$$

iii) (1.5 ptos.) Recordemos la definición de la relación | de divisibilidad en el conjunto $\mathbb Z$ de los enteros:

$$\forall m, n \in \mathbb{Z}, \quad m | n \iff \exists k \in \mathbb{Z}, n = k \cdot m.$$

Sabemos que | es refleja y transitiva en \mathbb{Z} (NO necesita demostrarlo), por lo que, tomando como \mathcal{R} en ii) la divisibilidad |, \mathcal{S}_{l} es de equivalencia.

Para $n \in \mathbb{Z}$ cualquiera, se pide determinar su clase de equivalencia respecto a la relación $S_{||}$.

Solución:

Sea $n \in \mathbb{Z}$ cualquiera y anotemos por [n] su clase de equivalencia para la relación $\mathcal{S}_{|}$ en \mathbb{Z} . Entonces, dado $m \in \mathbb{Z}$ cualquiera:

$$m \in [n] \iff m\mathcal{S}_{\mid} n$$
 (definición de clase de equivalencia, **0.3 ptos**)
 $\iff m \mid n \wedge n \mid m$ (definición de \mathcal{S}_{\mid})
 $\iff \exists k, l \in \mathbb{Z}, \ n = k \cdot m \wedge m = l \cdot n$ (definición de \mid)
 $\implies \exists k, l \in \mathbb{Z}, \ m = l \cdot k \cdot m$ (reemplazando n en la segunda igualdad)
 $\iff \exists k, l \in \mathbb{Z}, \ m = 0 \lor l \cdot k = 1$ (simplificando m (cuando se puede))
 $\iff \exists k, l \in \mathbb{Z}, \ m = 0 \lor k = l = 1 \lor k = l = -1.$ (puesto que k y l son enteros)

Las dos últimas expresiones se traducen en que $m=\pm n$ (puesto que $n=k\cdot m$) y análogamente m=0 se traduce en que m=n=0, lo que también corresponde a $m=\pm n$. (0.9 ptos)

De lo anterior se deduce que en general,

$$[n] = \{ n, -n \}.$$
 (0.3 ptos)

Observación: Como quedó estructurado, el desarrollo de arriba concluye con una implicación y no con la equivalencia necesaria para demostrar la igualdad anterior. La implicación recíproca es muy simple, y no se exigirá para tener el puntaje completo.

iv) (1.5 ptos.) Si \mathcal{R} es una relación de orden en A, demuestre que $\forall x, y \in A, x \mathcal{S}_{\mathcal{R}} y \iff x = y$.

Solución:

Sean $x, y \in A$ cualquiera.

$$xS_{\mathcal{R}}y \iff x\mathcal{R}y \land y\mathcal{R}x$$
 (definición de $S_{\mathcal{R}}$) $\implies x = y$. (como \mathcal{R} es de orden, es antisimétrica) (1.2 ptos.)

Para completar la equivalencia pedida, notar que como \mathcal{R} es relación de orden, es refleja y transitiva, luego por la parte i), $\mathcal{S}_{\mathcal{R}}$ es relación de equivalencia y por lo tanto refleja, así $x=y \implies x\mathcal{S}_{\mathcal{R}}y$.

(0.3 ptos.)

- **P2.** a) Sean A, B conjuntos, $C \subseteq A$ y $D \subseteq B$. Considere la función $f: A \times B \to A$ definida por f(x, y) = x.
 - i) (2.0 ptos.) Demuestre que $f^{-1}(C) = C \times B$.

Solución:

Para demostrar la igualdad de conjuntos pedida, sea $(x, y) \in A \times B$ cualquiera.

$$(x,y) \in f^{-1}(C) \iff f(x,y) \in C \qquad \qquad \text{(definición de preimagen)}$$

$$\iff x \in C \qquad \qquad \text{(definición de la función } f)$$

$$\iff x \in C \land y \in B \qquad \text{(como } (x,y) \in A \times B, \text{ entonces } y \in B \text{ es verdadero)}$$

$$\iff (x,y) \in C \times B. \qquad \text{(definición de producto cartesiano)}$$

$$\text{(2.0 ptos.)}$$

ii) (2.0 ptos.) Si $D \neq \emptyset$, demuestre que $f(C \times D) = C$.

Solución:

Para demostrar la igualdad de conjuntos pedida, sea $x \in A$ cualquiera.

$$x \in f(C \times D) \iff \exists \, (u,v) \in C \times D, \, f(u,v) = x \qquad \text{(definición de imagen de un subconjunto)}$$

$$\iff \exists \, (u,v) \in C \times D, \, u = x \qquad \text{(definición de la función } f)$$

$$\iff \exists \, u \in C, \, \exists \, v \in D, \, u = x \qquad \text{(def. de prod. cartesiano y props. de cuantifs.)}$$

$$\iff \exists \, u \in C, \, u = x \qquad \qquad (D \neq \emptyset)$$

$$\iff x \in C. \quad \text{(pertenecer a C es lo mismo que ser igual a algún elemento de C)}$$

$$\text{(2.0 ptos.)}$$

b) (2.0 ptos.) Sean A, B conjuntos y $g:A\to B$ una función que satisface la propiedad

$$\forall C, D \subseteq A, [C \subsetneq D \implies g(C) \neq g(D)].$$

Pruebe que g es inyectiva.

Observación: La notación $C\subsetneq D$ significa que $C\subseteq D$ pero $C\neq D$, por lo cual D tiene al menos un elemento que no pertenece a C.

Indicación: Utilice la propiedad satisfecha por g, con C, D adecuados.

Solución:

Usaremos la contrarrecíproca de la caracterización usual de inyectividad, esto es,

$$g$$
 es inyectiva $\iff \forall x, y \in A, [x \neq y \implies g(x) \neq g(y)].$

Sean entonces $x, y \in A$ cualquiera, tales que $x \neq y$.

Si consideramos los conjuntos

$$C = \{x\} \text{ y } D = \{x, y\},$$

se tiene que evidentemente $C \subseteq D$. Como y pertenece a D pero no a C (porque $x \neq y$), entonces $C \subsetneq D$. (1.0 pto.)

Luego, por la propiedad que satisface la función g, se tiene que $g(C) \neq g(D)$, lo que se traduce en

$$\{g(x)\} \neq \{g(x), g(y)\},\$$

de lo que se deduce que $g(x) \neq g(y)$. (1.0 pto.)

DURACIÓN: 1 hora y 30 minutos.

<u>Justifique adecuadamente</u> sus respuestas.

No olvide poner su NOMBRE y RUT en sus hojas de respuesta para identificarlas.

¡¡Mucho éxito!!