

Control 2 - Otoño 2025

Importante: En este enunciado, la matriz representante de la función lineal $T: U \to V$ con respecto a las bases (finitas) $\mathcal{B}_U, \mathcal{B}_V$ en U, V, respect., se denotará $[T]_{\mathcal{B}_V, \mathcal{B}_U}$ (a veces también denotada $[T]_{\mathcal{B}_V \leftarrow \mathcal{B}_U}$).

P1. Sea
$$\mathcal{B} = \{v_1, v_2, v_3\}$$
 base de \mathbb{R}^3 donde $v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ y $v_3 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$.

Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ la función lineal tal que $f(v_1) = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$, $f(v_2) = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ y $f(v_3) = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$.

- a) (1.5 ptos) Determine f(v), donde $v = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$.
- b) (2.0 ptos) Determine una base del núcleo de f, es decir, de $\mathrm{Ker}(f)$, e indique si la función es inyectiva. <u>Indicación</u>: Estudie para qué reales α, β, γ el vector $v = \alpha v_1 + \beta v_2 + \gamma v_3$ pertenece a $\mathrm{Ker}(f)$.
- c) (2.0 ptos) Determine una base de Im(f) e indique si la función es epiyectiva.
- d) (0.5 ptos) ¿Es f un isomorfismo? Justifique.

Solución:

a) Primero determinamos $\alpha, \beta, \gamma \in \mathbb{R}$ tales que $v = \alpha v_1 + \beta v_2 + \gamma v_3$. Para ello planteamos el siguiente sistema:

$$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}.$$

Resolviendo el sistema lineal obtenemos (detalles omitidos) que $\alpha = 1$, $\beta = 2$, $\gamma = 2$.[0.9 ptos por encontrar v como combinación lineal de \mathcal{B}]

Por linealidad de f, definición de f, y algebra matricial, sigue que

$$f(v) = f(1v_1 + 2v_2 + 2v_3) = 1f(v_1) + 2f(v_2) + 2f(v_3) = 1 \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 9 \\ 12 \\ 5 \end{pmatrix}.$$
[0.3 ptos por usar linealidad – 0.3 ptos por concluir]

b) Se pide encontrar los $v \in \mathbb{R}^3$ tales que f(v) = 0. Como \mathcal{B} es base de \mathbb{R}^3 , basta con encontrar los $v \in \langle \{v_1, v_2, v_3\} \rangle$ tales que que f(v) = 0, o equivalentemente, determinar $\alpha, \beta, \gamma \in \mathbb{R}$ tales que [0.8 ptos por formular (implícita o explícitamente) lo que hay que determinar]

$$f(\alpha v_1 + \beta v_2 + \gamma v_3) = 0.$$

Observar que: [0.4 ptos por plantear/llegar al sistema que se tiene que resolver]

$$f(\alpha v_1 + \beta v_2 + \gamma v_3) = 0 \iff \alpha f(v_1) + \beta f(v_2) + \gamma f(v_3) = 0 \qquad \text{(por linealidad de } f)$$

$$\iff \alpha \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix} = 0 \qquad \text{(por definición de } f)$$

$$\iff \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 4 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = 0. \qquad \text{(por álgebra matricial)}$$

Resolviendo el sistema obtenido (detalles omitidos), sigue que $\alpha = -2\gamma$ y $\beta = 0$. Luego,

$$\operatorname{Ker}(f) - \left\{ \gamma \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} : \gamma \in \mathbb{R} \right\} = \left\langle \left\{ \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\} \right\rangle.$$
 [0.4 ptos por especificar el Ker]

Como Ker $(f) \neq \{0\}$, por propiedad conocida, f no es inyectiva [0.2 ptos por conclusión y 0.2 ptos por justificación].

c) Primera forma: Por Teorema Núcleo Imagen y parte anterior se tiene que [0.4 ptos por invocar y aplicar el TNI]

$$\dim(\text{Im}(f)) = 3 - \dim(\text{Ker}(f)) = 3 - 1 = 2.$$

Comparando dimensiones, sigue que $\text{Im}(f) \neq \mathbb{R}^3$. Luego, f no es epiyectiva [0.2 ptos por conclusión y 0.2 ptos por justificación].

Para determinar $\operatorname{Im}(f)$, dado que su dimension es 2, basta encontrar un subconjunto de $\operatorname{Im}(f)$ de 2 vectores linealmente independientes [0.4 ptos por, implícita o explícitamente, observar lo anterior]. Claramente $\{f(v_1), f(v_2)\} \subseteq \operatorname{Im}(f)$, luego $\langle \{f(v_1), f(v_2)\} \rangle \subseteq \operatorname{Im}(f)$ [0.4 ptos por observar que $f(v_1), f(v_2) \in \operatorname{Im}(f)$]. Luego, como $\{f(v_1), f(v_2)\}$ es linealmente independiente e $\operatorname{Im}(f)$ es de dimensión 2, se tiene que:

$$\operatorname{Im}(f) = \left\langle \left\{ \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right\} \right\rangle.$$
 [0.4 ptos por decir que $\{f(v_1), f(v_2)\}$ es l.i. y concluir]

2da. forma: Como conocemos una base para el Ker(f) podemos extenderla a una base de \mathbb{R}^3 [0.6 ptos por invocar, implícita o explícitamente, el Teorema de Completación de Bases], por ejemplo tomando los vectores $v_2 = (2,1,0)^T$ y $v_3 = (-1,0,0)^T$ [0.4 ptos por identificar la completación de una base del Ker], y sabemos que sus imágenes, $(2,1,0)^T$, y $(2,4,2)^T$ definen una base de Im(f) [0.4 ptos por observación sobre las imagenes]. Entonces,

$$\operatorname{Im}(f) = \left\langle \left\{ \begin{pmatrix} 2\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\4\\2 \end{pmatrix} \right\} \right\rangle.$$
 [0.2 ptos por concluir]

Cómo $\text{Im}(f) \neq \mathbb{R}^3$, por definición, f no es epiyectiva [0.2 ptos por conclusión y 0.2 ptos por justificación].

3ra. forma: Por definción de imagen, $\operatorname{Im}(f) = \{f(v) : v \in \mathbb{R}^3\}$ [0.2 ptos por la definición]. Pero, como $\mathcal{B} = \{v_1, v_2, v_3\}$ es base de \mathbb{R}^3 , se tiene que para todo $v \in \mathbb{R}^3$ existen $\alpha, \beta, \gamma \in \mathbb{R}$ tales que $v = \alpha v_1 + \beta v_2 + \gamma v_3$ [0.2 ptos por expresar elementos del dominio de f como combinación

lineal de la base]. Luego,

$$f(v) = \alpha f(v_1) + \beta f(v_2) + \gamma f(v_3)$$
 (por linealidad de f)
$$= \alpha \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + \gamma \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
 (por definición de f)
$$= (\alpha + 2\gamma) \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}.$$
 (por álgebra matricial)

[0.4 ptos por la derivación anterior]

Sigue que $f(v) \in \langle \{(1,2,1)^T, (2,1,0^T)\}\rangle$, por lo que $\operatorname{Im}(f) \subseteq \langle \{(1,2,1)^T, (2,1,0^T)\}\rangle$ [0.4 ptos por la inclusión]. La igualdad se tiene por argumentos de dimensionalidad (observando que $f(v_1), f(v_2) \in \operatorname{Im}(f)$ son linealmente independientes, o por TNI y parte a) se deduce que $\operatorname{Im}(f)$ tiene dimensión 2) [0.4 ptos por conclusión y justificación].

Cómo $\text{Im}(f) \neq \mathbb{R}^3$, por definición, f no es epiyectiva [0.2 ptos por conclusión y 0.2 ptos por justificación].

d) [0.2 ptos por concluir que f no es isomorfismo y 0.3 ptos por cualquiera de las siguientes justificaciones]

1ra. forma: Como por b) sabemos que f no es inyectiva (o equivalentemente $Ker(f) \neq \{0\}$), entonces no es biyectiva y por lo tanto tampoco es un isomorfismo.

2da. forma: Como por c) sabemos que f no es epiyectiva (o equivalentemente $\text{Im}(f) \neq \mathbb{R}^3$), entonces no es biyectiva y por lo tanto tampoco es un isomorfismo.

P2. Sean $\mathcal{B} = \{v_1, v_2, v_3\}$ y $\mathcal{B}' = \{v_1 + v_2, v_2 + v_3, v_1 + v_3\}$ bases de un espacio vectorial V. Sea $T: V \to V$ una función lineal tal que

$$[T]_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

- a) (2.0 ptos) Determine las coordenadas de los vectores $3v_1 + v_2$ y $T(3v_1 + v_2)$ en términos de las bases \mathcal{B} y \mathcal{B}' , respectivamente. Es decir, calcule $[3v_1 + v_2]_{\mathcal{B}}$ y $[T(3v_1 + v_2)]_{\mathcal{B}'}$.
- b) (2.0 ptos) Calcule la matriz de pasaje de la base \mathcal{B}' a la base \mathcal{B} y úsela junto a la matriz $[T]_{\mathcal{B}',\mathcal{B}}$ para demostrar que

$$[T]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

c) (2.0 ptos) Calcule $[T \circ T]_{\mathcal{B}',\mathcal{B}}$. <u>Indicación</u>: Puede serle útil usar la parte b).

Solución:

a) Las coordenadas del vector $w = 3v_1 + v_2$ en la base \mathcal{B} son

$$[w]_{\mathcal{B}} = (3, 1, 0)^T.$$
 [1.0 pto.]

1era. forma: Las coordenadas del vector $T(w) = 3T(v_1) + T(v_2)$ son

$$[T(w)]_{\mathcal{B}'} = [T]_{\mathcal{B}',\mathcal{B}}[w]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}.$$

3

[0.5 ptos. por demostrar implícita o explícitamente que conoce la relación entre las coordenadas y 0.5 ptos. por el cálculo correcto del producto matricial]

2da. forma: Por definición de matriz representante, se observa que

$$T(v_1) = 0(v_1 + v + 2) + 1(v_2 + v_3) + 1(v_1 + v_3),$$

$$T(v_2) = 1(v_1 + v + 2) + 0(v_2 + v_3) + 1(v_1 + v_3).$$

[0.4 ptos por obtener $T(v_1)$ y $T(v_2)$ de la matriz representante.]

Sigue, por linealidad, que:

$$T(3v_1 + v_2) = 3T(v_1) + T(v_2) = 1(v_1 + v_1 + v_2) + 4(v_2 + v_3) + 4(v_1 + v_3),$$
 [0.2 ptos]

Luego, $[T(3v_1 + v_2)]_{\mathcal{B}',\mathcal{B}} = (1,3,4)^T$ [0.2 ptos].

b) La matriz de pasaje $[Id_V]_{\mathcal{B},\mathcal{B}'}$ pedida tiene en cada columna las coordenadas de los vectores de la base \mathcal{B}' en la base \mathcal{B} . Así, ésta es

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

[0.3 ptos. por cada columna correcta]

1
ra. forma. La matriz $[T]_{\mathcal{B},\mathcal{B}}$ está dada por

$$[T]_{\mathcal{B},\mathcal{B}} = [Id_V]_{\mathcal{B},\mathcal{B}'} \cdot [T]_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

 $[0.8~{
m ptos.}~{
m por}~{
m plantear}~{
m correctamente}~{
m el}~{
m cambio}~{
m de}~{
m bases}~{
m y}~0.3~{
m por}~{
m el}~{
m cálculo}~{
m del}~{
m producto}~{
m del}~{
m matrices.}]$

2da. forma. Por la definición de $[T]_{\mathcal{B}',\mathcal{B}}$ sabemos que $T(v_1) = (v_2 + v_3) + (v_3 + v_1)$, $T(v_2) = (v_1 + v_2) + (v_3 + v_1)$ y $T(v_3) = (v_1 + v_2) + (v_2 + v_3)$. [0.2 ptos. por la escritura de cada imagen por T de los vectores de la base \mathcal{B} usando la información de la matriz $[T]_{\mathcal{B}',\mathcal{B}}$]

Entonces, $[T(v_1)]_{\mathcal{B}} = (1, 1, 2)^T$, $[T(v_2)]_{\mathcal{B}} = (2, 1, 1)^T$ y $[T(v_3)]_{\mathcal{B}} = (1, 2, 1)^T$. Así,

$$[T]_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix}.$$

[0.3 ptos. por agrupar los vectores v_1, v_2 y v_3 y obtener las imágenes en términos de la base \mathcal{B}' y 0.2 ptos. por escribir la matriz $[T]_{\mathcal{B},\mathcal{B}}$]

c) Se sabe que la matriz representante de una composición es el producto de las matrices representantes de sus factores en las bases correspondientes. [1.0 pto. por mostrar implícita o explícitamente que conoce la regla de la matriz representante de una composición]

Para $T \circ T$ usaremos que

$$[T \circ T]_{\mathcal{B}',\mathcal{B}} = [T]_{\mathcal{B}',\mathcal{B}}[T]_{\mathcal{B},\mathcal{B}}.$$

Entonces,

$$[T \circ T]_{\mathcal{B}',\mathcal{B}} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 3 \\ 3 & 3 & 2 \\ 2 & 3 & 3 \end{pmatrix}.$$

[0.5 ptos. por la aplicación de la regla antes mencionada al caso en discusión y 0.5 ptos. por cálcular el producto de matrices correctamente]

P3. Sea V un espacio vectorial y sean $\mathcal{B}_U = \{u_1, u_2, u_3\}$ y $\mathcal{B}_W = \{w_1, w_2\}$ tales que $\mathcal{B}_V = \mathcal{B}_U \cup \mathcal{B}_W$ es base de V.

a) (2 ptos) Argumente que existe una función lineal $L: V \to V$ tal que

$$L(v) = \begin{cases} 2v, & \text{si } v \in \mathcal{B}_U, \\ 3v, & \text{si } v \in \mathcal{B}_W. \end{cases}$$

- b) (2 ptos) Determine $[L+S]_{\mathcal{B}_V,\mathcal{B}_V}$ sabiendo que $[S]_{\mathcal{B}_V,\mathcal{B}_V}=3I_5.$
- c) (2 ptos) Demuestre que L(U) = U donde $U = \langle B_U \rangle$ (por definición de imagen, $L(U) = \{L(u) : u \in U\}$).

Solución:

a) Basta recordar que una funcion lineal queda completamente determinada por los valores que toma en una base, por lo que conocidos sus valores en una base se pueden extrapolar a todo el dominio [2.0 ptos por invocar, implícita o explícitamente, el resultado]. En este caso particular, \mathcal{B}_V es base de V, por lo que L queda completamente determinada por los valores $L(u_1), L(u_2), L(u_3), L(w_1), L(w_2)$. En particular, si $v \in V$ evalúa a:

$$L(v) = 2(\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3) + 3(\beta_1 w_1 + \beta_2 w_2),$$

si $\alpha_1, \alpha_2\alpha_3, \beta_1, \beta_2 \in \mathbb{R}$ satisfacen que $v = \alpha_1u_1 + \alpha_2u_2 + \alpha_3u_3 + \beta_1w_1 + \beta_2w_2$.

b) Por resultado visto sobre matriz representante de la suma de transformaciones lineales, sabemos que:

$$[L+S]_{\mathcal{B}_V,\mathcal{B}_V} = [L]_{\mathcal{B}_V,\mathcal{B}_V} + [S]_{\mathcal{B}_V,\mathcal{B}_V}.$$
 [0.6 ptos]

Como $[S]_{\mathcal{B}_V,\mathcal{B}_V} = 3I_5$, bastará con determinar $[L]_{\mathcal{B}_V,\mathcal{B}_V}$ [0.4 ptos por evidenciar, implícita o explícitamente, que hay que calcular $[L]_{\mathcal{B}_V,\mathcal{B}_V}$]. Para ello, por definición de matriz representante, evaluamos L en los elementos de la base \mathcal{B}_V y los expresamos como combinación lineal de la misma base:

$$L(u_1) = 2u_1 = 2u_1 + 0u_2 + 0u_3 + 0w_1 + 0w_2,$$

$$L(u_2) = 2u_2 = 0u_1 + 2u_2 + 0u_3 + 0w_1 + 0w_2,$$

$$L(u_3) = 2u_3 = 0u_1 + 0u_2 + 2u_3 + 0w_1 + 0w_2,$$

$$L(w_1) = 3w_1 = 0u_1 + 0u_2 + 0u_3 + 3w_1 + 0w_2,$$

$$L(w_2) = 3w_2 = 0u_1 + 0u_2 + 0u_3 + 0w_1 + 3w_2.$$
[0.4 ptos]

Sigue que:

Luego,

c) 1ra. forma: Si $u \in U = \langle \{u_1, u_2, u_3\} \rangle$, entonces existen $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ tales que $u = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3$ [0.4 ptos por expresar elementos del dominio de L como combinación lineal de la base].

Luego,

$$\begin{split} L(u) &= \alpha_1 L(u_1) + \alpha_2 L(u_2) + \alpha_3 L(u_3) & \text{(por linealidad de L)} \\ &= 2(\alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3 & \text{(por definición de L)} \\ &= 2u. \end{split}$$

[0.4 ptos por derivación anterior.]

Como $2u \in U$, sigue que $L(U) \subseteq U$ [0.4 ptos por justificar inclusión].

Además, por linealidad de L, se tiene que $L(\frac{1}{2}u) = \frac{1}{2}(2u) = u$, y como $\frac{1}{2}u \in U$ (porque U es un sub-espacio vectorial), sigue que $u \in L(U)$ [0.6 ptos por derivación y justificación de la pertenencia]. Como u es arbitrario, sigue que $U \subseteq L(U)$ [0.2 ptos por concluir].

2da. forma: Dado que $[\cdot]_{\mathcal{B}_V}: U \to \mathbb{R}^5$ es un isomorfismo de espacios vectoriales, bastará verificar que $[L(U)]_{\mathcal{B}_V} = [U]_{\mathcal{B}_V}$ [0.8 ptos por enunciar esta forma de abordar el problema].

Sea $\{e_1, ..., e_5\}$ la base canónica de \mathbb{R}^5 .

Como $\mathcal{B}_U = \{u_1, u_2, u_3\}$ es base de U, entonces $\{\{[u_1]_{\mathcal{B}_V}, [u_2]_{\mathcal{B}_V}, [u_3]_{\mathcal{B}_V}\} = \{e_1, e_2, e_3\}$ es base de $[U]_{\mathcal{B}_V}$. En particular, $[U]_{\mathcal{B}_V} = \langle \{e_1, e_2, e_3\} \rangle$ [0.6 ptos por esta conclusión].

Por otro lado, si $u = \alpha_1 u_1 + \alpha_2 u_2 + \alpha_3 u_3$ con $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$, entonces

$$[L(u)]_{\mathcal{B}_{V}} = [L]_{\mathcal{B}_{V}, \mathcal{B}_{V}}[u]_{\mathcal{B}_{V}} = \begin{pmatrix} 2 & & & \\ & 2 & & & \\ & & 2 & & \\ & & & 3 & \\ & & & & 3 \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ 0 \\ 0 \end{pmatrix} = 2 \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \\ 0 \\ 0 \end{pmatrix}$$

([0.4 ptos por usar matriz representante para determinar $[L(u)]_{\mathcal{B}_{V}}$])

Luego, $[L(U)]_{\mathcal{B}_V} = \langle \{e_1, e_2, e_3\} \rangle$ [0.2 ptos por esta conclusión].

En resumen, $[L(U)]_{\mathcal{B}_V} = \langle \{e_1, e_2, e_3\} \rangle = [U]_{\mathcal{B}_V}.$

Tiempo: 3.0 hrs.