logofcim-eps-converted-to.pdf

Sabado 22 de Abril

PAUTA CONTROL 2

P1. (6.0 pts.) Sean $A \subseteq E$ y $B \subseteq E$ dos conjuntos. Demuestre que

$$\mathcal{P}(A \cup B) = \{ X \cup Y \in \mathcal{P}(E) \mid X \subseteq A \land Y \subseteq B \}.$$

Solución

Demostraremos igualdad de conjuntos probando dos inclusiones.

Primera inclusión: Demostremos que

$$\mathcal{P}(A \cup B) \supseteq \{X \cup Y \in \mathcal{P}(E) \mid X \subseteq A \land Y \subseteq B\}.$$

Sea Z un elemento del conjunto $\{X \cup Y \in \mathcal{P}(E) \mid X \subseteq A \land Y \subseteq B\}$. Entonces existen $X \subseteq A$ e $Y \subseteq B$ tales que $Z = X \cup Y$.

Puntaje: 1.0 si plantea bien un elemento del conjunto.

Pero $X \subseteq A \subseteq A \cup B$ e $Y \subseteq B \subseteq A \cup B$ por lo que $X \cup Y \subseteq A \cup B$.

Así, $X \cup Y \in \mathcal{P}(A \cup B)$ por definición del conjunto potencia de $A \cup B$.

Puntaje: 1.5 si obtuvo la primera inclusión.

Segunda inclusión: Ahora demostremos que

$$\mathcal{P}(A \cup B) \subseteq \{X \cup Y \in \mathcal{P}(E) \mid X \subseteq A \land Y \subseteq B\}.$$

Sea $Z \in \mathcal{P}(A \cup B)$, es decir $Z \subseteq A \cup B$. Veamos que existen $X \subseteq A$ e $Y \subseteq B$ tal que $Z = X \cup Y$.

Consideremos los conjuntos $X'=Z\cap A$ e $Y'=Z\cap B$. Claramente $X'\subseteq A$ e $Y'\subseteq B$. Veamos que $Z=X'\cup Y'$ con lo que se probaría lo pedido.

Puntaje: 1.0 si definió los conjuntos X' e Y' u otros tales que $Z = X' \cup Y'$ con $X' \subseteq A$ e $Y' \subseteq B$.

Solución

Demostremos $Z\subseteq X'\cup Y'$: Sea $z\in Z$, como $Z\subseteq A\cup B$ entonces $z\in A\vee z\in B$. Es decir

$$z \in Z \land (z \in A \lor z \in B)$$
$$(z \in Z \land z \in A) \lor (z \in Z \land z \in B)$$
$$(z \in Z \cap A) \lor (z \in Z \cap B)$$
$$z \in (Z \cap A) \cup (Z \cap B)$$
$$z \in X' \cup Y'$$

Con lo que se concluye que $Z \subseteq X' \cup Y'$.

Puntaje: 1.5 si realiza un desarrollo lógico para obtener $Z \subseteq X' \cup Y'$

Demostremos $X' \cup Y' \subseteq Z$: Sea $w \in X' \cup Y'$, por lo tanto $w \in (Z \cap A)$ ó $w \in (Z \cap B)$. En ambos casos $w \in Z$ con lo que se concluye que $X' \cup Y' \subseteq Z$

Puntaje: 1.0 si realiza un desarrollo lógico para obtener $X' \cup Y' \subseteq Z$

Así, se concluye que $Z = X' \cup Y'$ y por lo tanto $Z \in \{X \cup Y \in \mathcal{P}(E) \mid X \subseteq A \land Y \subseteq B\}$. lo que concluye la segunda inclusión.

P2. a) Sea $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es función}\}$, considere la función

$$\varphi: \mathcal{F} \longrightarrow \mathbb{R}$$

$$f \longmapsto \varphi(f) = f(0).$$

- (i) (1.5 pts.) Demuestre que φ es epiyectiva.
- (ii) (1.5 pts.) Indique si es o no es inyectiva, justificando su respuesta.

Solución

subparte (i): Sea $a \in \mathbb{R}$ un elemento arbitrario del codominio de φ . Demostremos que existe una función $f \in \mathcal{F}$ tal que $\varphi(f) = a$.

Así debemos buscar una función $f: \mathbb{R} \to \mathbb{R}$ tal que f(0) = a.

Por ejemplo:

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \longmapsto f(x) = a.$

En efecto, $\varphi(f) = f(0) = a$.

Puntaje: 1.5 si obtuvo el resultado, justificando correctamente que la función es epiyectiva.

Si no, 0.5 si sólo encontró una función que evaluada en 0 se obtiene un a arbitrario pero no supo concluir.

subparte (ii): Es claro que φ no es inyectiva pues la función f definida antes y la función g definida como

$$g: \mathbb{R} \to \mathbb{R}$$

 $x \longmapsto g(x) = a + x.$

son dos funciones distintas tales que $\varphi(f) = \varphi(g) = f(0) = a = g(0) = \varphi(g)$. **Puntaje**: 1.5 si obtuvo el resultado, dando dos funciones diferentes que al evaluarlas dan lo mismo y concluyendo correctamente que no es inyectiva. Si no, 0.5 si encontró dos funciones que evaluadas en 0 se obtiene el mismo a pero no supo concluir. También sirve haber mostrado dos funciones que evaluadas en 0 dan un número particular. Por ejemplo f(x)=8 y g(x)=8+x.

b) Sea E un conjunto no vacío. Se define la función identidad en E:

$$id_E : E \longrightarrow E$$

 $x \longmapsto id_E(x) = x.$

Sea $f: E \longrightarrow E$ una función tal que $f \circ f = f$. Demuestre que

- (i) (1.5 pts.) f inyectiva $\Longrightarrow f = \mathrm{id}_E$.
- (ii) (1.5 pts.) f epiyectiva $\Longrightarrow f = id_E$.

Solución

subparte (i):

Sea $x \in E$ arbitrario. Veamos que f invectiva implica f(x) = x.

Consideremos y = f(x) un punto de E al que aplicamos la función f. Claramente f(y) = f(f(x)) = f(x). Como f es inyectiva y = x, es decir f(x) = x para todo $x \in E$. Se concluye que f es la función identidad.

Puntaje: 1.5 si obtuvo el resultado. Si no, 0.5 si usó correctamente la inyectividad.

subparte (ii):

Sea $x \in E$ arbitrario. Veamos que f epiyectiva implica f(x) = x.

Como f es epiyectiva existe $y \in E$ tal que f(y) = x.

Aplicando la función f obtenemos f(f(y)) = f(x). Pero f(f(y)) = f(y), así x = f(y) = f(x). Así f(x) = x para todo $x \in E$. Es decir, que f es la función identidad.

Puntaje: 1.5 si obtuvo el resultado. Si no, 0.5 si usó correctamente la epiyectividad.

TIEMPO: 1:15 hrs.

No olvidar colocar nombre y RUT identificando sus hojas de respuestas.