

Control 2

- **P1.** a) (3.0 pts) Para $n \in \mathbb{N}$ se definen, $s_{2n} = \sum_{i=0}^{n} {2n+1-i \choose i}$ y $s_{2n+1} = \sum_{i=0}^{n+1} {2(n+1)-i \choose i}$. Pruebe, sin usar inducción, que $\forall n \in \mathbb{N}, s_{2(n+1)} = s_{2n+1} + s_{2n}$.
 - b) Un alfabeto se define como un conjunto finito de símbolos o caracteres. Para un alfabeto A y $\ell \in \mathbb{N}$, $\ell \geq 1$, llamamos palabra de largo ℓ sobre el alfabeto A a una secuencia finita de caracteres en A. Por ejemplo, abba y aabaa son palabras sobre el alfabeto $A = \{a, b\}$, de largos 4 y 5 respectivamente.
 - b.1.) (1.5 pts) Sea $\ell \geq 1$. Determine el número de palabras de largo ℓ sobre el alfabeto $\{a,b\}$
 - b.2.) (1.5 pts) Sea \mathcal{S} el conjunto de palabras sobre el alfabeto $\{a,b\}$. Pruebe que \mathcal{S} es numerable.

Solución.

a) En efecto,

$$\begin{split} s_{2(n+1)} &= \sum_{i=0}^{n+1} \binom{2(n+1)+1-i}{i} & \text{(Definición de } s_{2(n+1)}) \\ &= \binom{2(n+1)+1}{0} + \sum_{i=1}^{n+1} \binom{2(n+1)+1-i}{i} & \text{((0.5 pts))} \\ &= 1 + \sum_{i=1}^{n+1} \left[\binom{2(n+1)-i}{i} + \binom{2(n+1)-i}{i-1} \right] & \text{(Porque } \binom{a}{0} = 0 \text{ e Identidad de Pascal } \underbrace{(0.9 pts)}) \\ &= \binom{2(n+1)}{0} + \sum_{i=1}^{n+1} \binom{2(n+1)-i}{i} + \sum_{i=1}^{n+1} \binom{2(n+1)-i}{i-1} & \text{(Porque } \binom{a}{0} = 1 \text{ y propiedades de sumatorias } \underbrace{(0.5 pts)}) \\ &= \sum_{i=0}^{n+1} \binom{2(n+1)-i}{i} + \sum_{j=0}^{n} \binom{2(n+1)-(j+1)}{j} & \text{(Cambio de indice } j = i-1 \underbrace{(0.9 pts)}) \\ &= \sum_{i=0}^{n+1} \binom{2(n+1)-i}{i} + \sum_{j=0}^{n} \binom{2n+1-j}{j} & \text{((0.2 pts))} \\ &= s_{2n+1} + s_{2n}. & \text{(Definición de } s_{2n+1} \text{ y } s_{2n}) \end{split}$$

- b.1.) Sea S_{ℓ} el conjunto de palabras de largo ℓ sobre el alfabeto $\{a,b\}$. Podemos representar cada elemento de S_{ℓ} como una tupla de largo ℓ a coordenadas en $\{a,b\}$, i.e., como un elemento de $\{a,b\}^{\ell}$. Esta representación es única. Formalmente, $f:\{a,b\}^{\ell}\to S_{\ell}$ tal que $f((c_1,c_2,...,c_{\ell}))=(c_1,c_2,...,c_{\ell})$ es biyección (0.7 pts por argumentar que S_{ℓ} esta en correspondencia 1-a-1 con $\{a,b\}^{\ell}$). Sigue, aplicando la regla del producto, que $|S_{\ell}|=|\{a,b\}^{\ell}|=|\{a,b\}^{\ell}|=2^{\ell}$ (0.4 pts por invocar o aplicar la regla del producto y concluir y 0.4 pts por determinar correctamente la cardinalidad de S_{ℓ}).
- b.2.) Observar que $S = \bigcup_{\ell \in \mathbb{N}^*} S_\ell$ (0.4 pts por expresar S como unión numerable de conjuntos finitos o numerables). Luego, dado que unión numerable de conjuntos finitos o numerables es finito o numerable, se tiene que $|S| \leq |\mathbb{N}|$ (0.3 pts por invocar resultado y concluir).

Para concluir, basta con mostrar que S es infinito (porque si un conjunto infinito C es tal que $|C| \leq |\mathbb{N}|$, entonces C es numerable). En efecto, como $\underbrace{aa....a}_{\ell \text{ veces}} \in S_{\ell}$ para todo $\ell \geq 1$, sigue que S_{ℓ} es infinito (0.4)

pts por argumentar que S es infinito y 0.4 pts por invocar el resultado que caracteriza numerabilidad).

P2. Sea (G,\star) un grupo con neutro $e \in G$. Sea \mathcal{R} una relación de **orden** en G que verifica la siguiente propiedad,

$$\forall x, y, z \in G, \ x\mathcal{R}y \implies x \star z\mathcal{R}y \star z.$$

Sean $G_+ = \{g \in G \mid e\mathcal{R}g\} \text{ y } G_- = \{g \in G \mid g\mathcal{R}e\}.$

- a) (1.5 pts) Pruebe que $G_{+} \cap G_{-} = \{e\}.$
- b) (1.5 pts) Pruebe que $\forall g \in G, g \in G_+ \implies g^{-1} \in G_-$.
- c) (1.5 pts) Pruebe que (G_+, \star) es una estructura algebraica (es decir, que \star es una ley de composición interna en G_+).

Asuma que el resultado de la parte c) sigue siendo válido al reemplazar G_+ por G_- (no lo demuestre).

d) (1.5 pts) Pruebe que si G es abeliano, entonces (G_+, \star) y (G_-, \star) son estructuras algebraicas isomorfas.

Solución.

- a) Debemos mostrar una igualdad de conjuntos, para lo cual procedemos por doble inclusión (0.2 pts). Por la reflexividad de \mathcal{R} , se cumple que $e\mathcal{R}e$, con lo cual $e \in G_+$ y $e \in G_-$. Luego, $e \in G_+ \cap G_-$ (0.3 pts). Así, $\{e\} \subseteq G_+ \cap G_-$ (0.2 pts). Veamos ahora que $G_+ \cap G_- \subseteq \{e\}$. Sea $g \in G_+ \cap G_-$ cualquiera. Como $g \in G_+$, sigue que $e\mathcal{R}g$; como $g \in G_-$, se tiene que $g\mathcal{R}e$. Así, tenemos que $g\mathcal{R}e$ y $e\mathcal{R}g$ (0.2 pts). Por antisimetría de \mathcal{R} , necesariamente se tiene que $g \in G_+$ 0, equivalentemente, $g \in \{e\}$ 0.3 pts). Como $g \in G_+$ 1 es un elemento cualquiera, concluimos que $\forall g \in G_+ \cap G_-$ 1, $g \in \{e\}$ 2. Esto prueba que $G_+ \cap G_- \subseteq \{e\}$ 3 y concluye la demostración
- b) Sea $g \in G$ cualquiera y supongamos que $g \in G_+$.

$$g \in G_+ \iff e\mathcal{R}g$$
 (por definición de G_+ (0.25 pts))
 $\implies e \star g^{-1}\mathcal{R}g \star g^{-1}$ (por la propiedad indicada en el enunciado (0.5 pts))
 $\iff g^{-1}\mathcal{R}e$ (porque e es el neutro y g^{-1} es el inverso de g (0.5 pts))
 $\iff g^{-1} \in G_-$ (por definición de G_- (0.25 pts))

Como $g \in G$ es un elemento cualquiera, concluimos que $\forall g \in G, g \in G_+ \implies g^{-1} \in G_-$.

c) Para probar que (G_+, \star) es una estructura algebraica, debemos mostrar que $\forall g, h \in G_+, g \star h \in G_+$ (0.2 pts).

Sean $g, h \in G_+$ cualesquiera. Como $h \in G_+$, de la parte b) sabemos que $h^{-1} \in G_-$, con lo que obtenemos que $h^{-1}\mathcal{R}e$ y $e\mathcal{R}g$ (0.4 pts). Por transitividad de \mathcal{R} , esto implica que $h^{-1}\mathcal{R}g$ (0.3 pts). Usando la propiedad indicada en el enunciado, tenemos que

$$h^{-1}\mathcal{R}g \implies h^{-1} \star h\mathcal{R}g \star h$$
 ((0.2 pts))
 $\iff e\mathcal{R}g \star h$ (porque h^{-1} es el inverso de h (0.2 pts))
 $\iff g \star h \in G_+,$ (por definición de G_+ (0.2 pts))

lo que concluye la demostración.

d) Consideremos la función $\varphi: G_+ \to G_-$ definida por $\varphi(g) = g^{-1}$, $\forall g \in G_+$. Notemos que esta función está bien definida ya que de la parte b) sabemos que si $g \in G_+$, entonces $g^{-1} \in G_-$ (0.3 pts).

Veamos que φ es un homomorfismo. Sean $g, h \in G_+$,

$$\varphi(g \star h) = (g \star h)^{-1} = h^{-1} \star g^{-1}.$$
 (0.2 pts)

Como G es abeliano, tenemos que $h^{-1} \star g^{-1} = g^{-1} \star h^{-1} = \varphi(g) \star \varphi(h)$. Así, φ es un homomorfismo (0.2 pts).

Veamos ahora que φ es biyectiva. Notemos que $\forall g \in G_-, g^{-1} \in G_+$. En efecto, podemos proceder de modo análogo que en b) para obtener que

$$g \in G_{-} \iff g\mathcal{R}e$$
 (por definición de G_{-})
 $\implies g \star g^{-1}\mathcal{R}e \star g^{-1}$ (por la propiedad indicada en el enunciado)
 $\iff e\mathcal{R}g^{-1}$ (porque e es el neutro y g^{-1} es el inverso de g)
 $\iff g^{-1} \in G_{+}$. (por definición de G_{+} (0.3 pts))

Esto permite definir la función $\widetilde{\varphi}: G_- \to G_+$ por $\widetilde{\varphi}(g) = g^{-1}$, $\forall g \in G_-$. Notemos que $\varphi \circ \widetilde{\varphi} = id_{G_-}$ y $\widetilde{\varphi} \circ \varphi = Id_{G_+}$, por lo tanto $\widetilde{\varphi}$ es la inversa de φ , lo que nos permite conlcuir que φ es biyectiva (0.3 pts).

Así, φ es un isomorfismo entre (G_+, \star) y (G_-, \star) (0.2 pts).

Indicaciones corrección. En caso de que se demuestre inyectividad y epiyectividad de φ separadamente, asignar 0.3 pts a inyectividad y 0.3 pts a epiyectividad. Mantener los 0.2 pts por la conclusión.

Duración: 2 horas.