Control 1 MA1101 Introducción al Álgebra 2024-3

P1.

(a) (3 puntos) Sabiendo que la proposición

$$\neg[(s \Leftrightarrow \neg q) \Longrightarrow \neg r] \Longrightarrow [(p \lor q) \land r]$$

es falsa, determine el valor de verdad de p, q, r y s.

(b) (3 puntos) Considere la sucesión de reales u_n dada por

$$\begin{cases} u_0 = 2 \\ u_1 = 3 \\ u_n = 3u_{n-1} - 2u_{n-2} \end{cases}$$

demuestre usando inducción que

$$(\forall n \in \mathbb{N}) \big(u_n = 2^n + 1 \big)$$

Solución

(a)

• (0.5 puntos) Si $\neg [(s \Leftrightarrow \neg q) \Longrightarrow \neg r] \Longrightarrow [(p \lor q) \land r]$ es falsa se deduce que

$$\neg[(s \Leftrightarrow \neg q) \Longrightarrow \neg r] \equiv V \land [(p \lor q) \land r] \equiv F$$

- (0.2 puntos) Si $\neg[(s \Leftrightarrow \neg q) \Longrightarrow \neg r] \equiv V$ se deduce que

$$(s \Leftrightarrow \neg q) \Longrightarrow \neg r \equiv F$$

• (0.5 puntos) Si $(s \Leftrightarrow \neg q) \Longrightarrow \neg r \equiv F$ se deduce que

$$(s \Leftrightarrow \neg q) \equiv V \land \neg r \equiv F$$

• (0.2 puntos) Si $\neg r \equiv V$ se deduce que

$$r \equiv V$$

• (0.5 puntos) Si $r \equiv V$ y $[(p \lor q) \land r] \equiv F$ se deduce que

$$p \vee q \equiv F$$

• (0.5 puntos) Si $(p \lor q) = F$ se deduce que

$$p \equiv F \land q \equiv F$$

• (0.6 puntos) Si $(s \Leftrightarrow \neg q) \equiv V$ y $\neg q \equiv V$ se deduce que

$$s \equiv V$$

En resumen

$$p \equiv F$$
 $q \equiv F$ $r \equiv V$ $s \equiv V$

(b) Caso base. n=0 y n=1. Notamos que por definición $u_0=2$ y $u_1=3$, mientras que la fórmula nos indica

$$\begin{cases} u_0 = 2^0 + 1 = 2 & (0.5 \text{ puntos}) \\ u_1 = 2^1 + 1 = 3 & (0.5 \text{ puntos}) \end{cases}$$

lo cual es consistente, por lo tanto se cumple el caso base.

Hipótesis de inducción. Asumamos que

$$(\forall n \in \mathbb{N}) \left(\underbrace{u_n = 2^n + 1}_{\text{(0.5 puntos)}} \land \underbrace{u_{n-1} = 2^{n-1} + 1}_{\text{(0.5 puntos)}} \right)$$

Paso inductivo. Debemos mostrar que

$$(\forall n \in \mathbb{N}) (u_{n+1} = 2^{n+1} + 1)$$
 (0.5 puntos)

Para ello, sabemos que por definición que

$$u_{n+1} = 3u_n - 2u_{n-1}$$

y al usar la hipótesis de inducción llegamos a

$$u_{n+1} = 3u_n - 2u_{n-1}$$

$$= 3(2^n + 1) - 2(2^{n-1} + 1)$$

$$= 3 \cdot 2^n + 3 - 2^n - 2$$

$$= 2 \cdot 2^n + 1$$

$$= 2^{n+1} + 1 \text{ (0.5 puntos)}$$

P2.

Sean X e Y dos conjuntos y $f: X \rightarrow Y$ una función. Se define

$$F: X \times X \to Y \times Y$$

$$(x_1, x_2) \mapsto F(x_1, x_2) = (f(x_1), f(x_2))$$

- (a) (2 puntos) Muestre que f es inyectiva si y solo si F es inyectiva y que f es epiyectiva si y solo si F es epiyectiva.
- (b) (2 puntos) Muestre que la afirmación

$$(\forall A, B \in \mathcal{P}(X))(F(A \times B) = f(A) \times f(B))$$

es verdadera.

(c) (2 puntos) Muestre que la afirmación

$$(\forall C, D \in \mathcal{P}(Y))(F^{-1}((C \times D)^c)) = (f^{-1}(C) \times f^{-1}(D))^c$$

es verdadera.

Solución

(a) **Inyectividad.** Mostremos la doble implicancia, partiendo por \Rightarrow . Sean $(a_1, b_1), (a_2, b_2) \in X \times X$ se tiene que

$$F(a_1,b_1) = F(a_2,b_2) \Longrightarrow (f(a_1),f(b_1)) = (f(a_2),f(b_2)) \qquad \text{(0.2 puntos)}$$

$$\Longrightarrow f(a_1) = f(a_2) \land f(b_1) = f(b_2)$$

$$\Longrightarrow a_1 = a_2 \land b_1 = b_2 \qquad \text{(0.2 puntos)}$$

$$\Longrightarrow (a_1,b_1) = (a_2,b_2) \qquad \text{(0.1 puntos)}$$

Lo que muestra que F es inyectiva.

Mostremos ahora la inversa \Leftarrow . Sea $(a,b) \in X \times X$ y tomemos (a_0,b_0) fijo. Si asumimos que F es inyectiva, se tiene entonces que

$$F(a, a_0) = F(b, b_0) \Longrightarrow (a, a_0) = (b, b_0) \quad (0.2 \text{ puntos})$$

$$(f(a), f(a_0)) = (f(b), f(b_0)) \Longrightarrow a = b \land a_0 = b_0 \quad (0.1 \text{ puntos})$$

$$f(a) = f(b) \land f(a_0) = f(b_0) \Longrightarrow a = b \land a_0 = b_0 \quad (0.1 \text{ puntos})$$

En particular, y fijando nuestra atención únicamente en el par (a, b) se llega a

$$f(a) = f(b) \Longrightarrow a = b$$
 (0.1 puntos)

es decir f es inyectiva.

Epiyectividad. Mostremos la doble implicancia, partiendo por \Rightarrow . Sea $(y_1, y_2) \in Y \times Y$. Dado que f es epiyectiva, se tiene que existen x_1, x_2 tales que $f(x_1) = y_1$ y $f(x_2) = y_2$, (0.3 puntos) luego

$$F(x_1, x_2) = (f(x_1), f(x_2)) = (y_1, y_2)$$
 (0.2 puntos)

lo que indica que F es epiyectiva. Mostremos ahora la inversa \Leftarrow . Sean $y \in Y$ y $y_0 \in Y$ fijo. Dado que F es epiyectiva, se tiene que existe (x, x_0) tal que $F(x, x_0) = (y, y_0)$ (0.1 puntos),

$$(\exists (x, x_0) \in X \times X)(F(x, x_0) = (y, y_0)) \Longrightarrow (\exists (x, x_0) \in X \times X)(f(x), f(x_0)) = (y, y_0)) \text{ (0.2 puntos)}$$

 $\Longrightarrow (\exists (x, x_0) \in X \times X)(f(x) = y \land f(x_0) = y_0) \text{ (0.1 puntos)}$

En particular, fijando nuestra atención en x se tiene que

$$(\exists x \in X)(f(x) = y)$$
 (0,1 puntos)

es decir f es epiyectiva.

(b) Sean $A, B \in \mathcal{P}(X)$. Si $(y_1, y_2) \in Y \times Y$ es tal que $(y_1, y_2) \in F(A \times B)$ se tiene que $\exists (x_1, x_2) \in A \times B$ tal que

$$F(x_1, x_2) = (y_1, y_2) \Longrightarrow (f(x_1), f(x_2)) = (y_1, y_2) \quad (0.4 \text{ puntos})$$

$$\Longrightarrow f(x_1) = y_1 \land f(x_2) = y_2 \quad (0.2 \text{ puntos})$$

$$\Longrightarrow y_1 \in f(A) \land y_2 \in f(B) \quad (0.2 \text{ puntos})$$

$$\Longrightarrow (y_1, y_2) \in f(A) \times f(B) \quad (0.2 \text{ puntos})$$

esto dice que $F(A \times B) \subseteq f(A) \times f(B)$. Inversamente, sea $(y_1, y_2) \in f(A) \times f(B)$, se tiene que

$$y_1 \in f(A) \land y_2 \in f(B) \Longrightarrow (\exists x_1 \in A)(f(x_1) = y_1) \land (\exists x_2 \in B)(f(x_2) = y_2) \qquad (0.4 \text{ puntos})$$

$$\Longrightarrow (\exists (x_1, x_2) \in A \times B)((f(x_1), f(x_2)) = (y_1, y_2)) \qquad (0.2 \text{ puntos})$$

$$\Longrightarrow (\exists (x_1, x_2) \in A \times B)(F(x_1, x_2) = (y_1, y_2)) \qquad (0.2 \text{ puntos})$$

$$\Longrightarrow (y_1, y_2) \in F(A \times B) \qquad (0.2 \text{ puntos})$$

Lo de arriba dice que $f(A) \times f(B) \subseteq F(A \times B)$. Dado que hemos probado la doble contención, se tiene que

$$F(A \times B) = f(A) \times f(B)$$

(c) Sea

$$(x_1, x_2) \in F^{-1}((C \times D)^c)$$

Esto significa que

$$(f(x_1), f(x_2)) \notin C \times D \Longrightarrow f(x_1) \notin C \vee f(x_2) \notin D$$
 (0.4 puntos)

Por definición de preimagen, esto implica:

$$x_1 \notin f^{-1}(C) \lor x_2 \notin f^{-1}(D)$$
 (0.3 puntos)

Por lo tanto,

$$(x_1, x_2) \notin f^{-1}(C) \times f^{-1}(D) \Longrightarrow (x_1, x_2) \in (f^{-1}(C) \times f^{-1}(D))^c$$
 (0.3 puntos)

En definitiva $F^{-1}((C \times D)^c) \subseteq (f^{-1}(C) \times f^{-1}(D))^c$. Inversamente, el análisis es similar, de hecho todas las implicancias de arriba se invierten, en detalle:

$$(x_1, x_2) \in (f^{-1}(C) \times f^{-1}(D))^c \Longrightarrow (x_1, x_2) \notin f^{-1}(C) \times f^{-1}(D) \quad (0.3 \text{ puntos})$$

$$\Longrightarrow x_1 \notin f^{-1}(C) \vee x_2 \notin f^{-1}(D) \quad (0.3 \text{ puntos})$$

$$\Longrightarrow (f(x_1), f(x_2)) \notin C \times D \quad (0.2 \text{ puntos})$$

$$\Longrightarrow (x_1, x_2) \in F^{-1}((C \times D)^c) \quad (0.2 \text{ puntos})$$

P3.

Dado $n \in \mathbb{N} \setminus \{0\}$ definamos $E = \{1, 2, 3, \ldots, n\}$. En $\mathcal{P}(E)$ se define la relación R mediante

$$A R B \Leftrightarrow A \subseteq B$$

- (a) (1.5 puntos) Muestre que R es una relación de orden. Muestre que es una relación de orden total si n=1, y que es parcial si n>1.
- (b) (1.4 puntos) Decida si R tiene elementos máximos o mínimos y si estos son únicos o no.
- (c) (0.8 puntos) Realice un diagrama de Hasse de R considerando n=3.
- (d) Sean $A, B \in \mathcal{P}(E)$ dados por $A = \{x_1, x_2, \ldots, x_j\}$ y $B = \{y_1, y_2, \ldots, y_k\}$ con $x_1 < x_2 < \cdots < x_j$ e $y_1 < y_2 < \cdots < y_k$ diremos que A < B si $(\exists i_0 \in E)$ tal que

•
$$(\forall i < i_0)(x_i = y_i)$$

• $x_{i_0} < y_{i_0}$. Diremos que $A \leq B$ si $A < B \vee A = B$.

(por ejemplo $\{1, 2, 3\} < \{1, 2, 4, 5\}$ pues los elementos están ordenados en forma creciente y coinciden hasta obtener una diferencia en la tercera posición)

En $\mathcal{P}(E)$ se define la relación S mediante

$$A S B \Leftrightarrow (|A| < |B|) \lor (|A| = |B| \land A \le B)$$

- (i) (1.5 puntos) Se sabe que S es una relación de orden (no es necesario mostrarlo). Muestre que S es extensión de la relación de orden parcial R, es decir muestre
 - * S es una relación de orden total
 - * $(\forall A, B \in \mathcal{P}(E))(A R B \Longrightarrow A S B)$
- (ii) (0.8 puntos) Asuma que n=3. Sobre el diagrama de Hasse de R encontrado anteriormente, realice un diagrama de Hasse de S.

Solución

(a) **Reflexividad**. (0.3 puntos) La relación \subseteq es reflexiva si para todo conjunto A, se cumple que:

$$A \subseteq A$$

Esto es cierto porque, por definición, todo elemento de A pertenece a A. Por lo tanto, $A \subseteq A$ es siempre verdadero. **Antisimetría.** (0.3 puntos) La relación \subseteq es antisimétrica si, para todos los conjuntos A y B, se cumple que:

$$A \subseteq B \land B \subseteq A \Longrightarrow A = B$$

Esto es cierto porque, si $A \subseteq B$, entonces todo elemento de A pertenece a B, y si $B \subseteq A$, todo elemento de B pertenece a A, por lo que A = B.

Transitividad. (0.3 puntos) La relación \subseteq es transitiva si, para todos los conjuntos $A, B \neq C$, se cumple que:

$$A \subseteq B \land B \subseteq C \Longrightarrow A \subseteq C$$

Esto es cierto porque, si $A \subseteq B$, entonces todo elemento de A pertenece a B. Si además $B \subseteq C$, entonces todo elemento de B pertenece a C. Por lo tanto, todo elemento de A pertenece a C, lo que implica $A \subseteq C$.

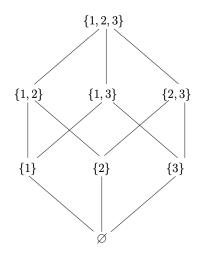
Relación de orden total. (0.3 puntos) Notamos que si n=1 entonces $E=\{1\}$ y por tanto $\mathcal{P}(E)=\{\varnothing,\{1\}\}$. Por lo que la única opción es comparar \varnothing con $\{1\}$ o viceversa. Dado que $\varnothing\subseteq\{1\}$ se tiene que $\varnothing R\{1\}$, por lo tanto R es total.

Relación de orden parcial. (0.3 puntos) Si n>1 entonces $A=\{1\}$ y $B=\{2\}$ son tales que $A,B\in P(E)$, pero $\{1\}\not\subseteq\{2\}\land\{2\}\not\subseteq\{1\}$ por lo que $\{1\}\not\not\in\{2\}\land\{2\}\not\subseteq\{1\}$, lo que indica que $\{1\}$ y $\{2\}$ no se pueden comparar y por lo tanto R es parcial.

(b) **Elemento máximo.** E es elemento máximo pues $(\forall A \in \mathcal{P}(E))(A \subseteq E)$ es decir $(\forall A \in \mathcal{P}(E))(ARE)$ (0.4 puntos). Este elemento es único, pues de existir otro elemento E' tal que $(\forall A \in \mathcal{P}(E))(ARE')$ se tendría que ERE' y al mismo tiempo E'RE por lo que E = E'. (0.3 puntos)

Elemento mínimo. \varnothing es elemento mínimo pues $(\forall A \in \mathcal{P}(E))(\varnothing \subseteq A)$ es decir $(\forall A \in \mathcal{P}(E))(\varnothing RA)$. (0.4 puntos) Este elemento es único, pues de existir otro elemento \varnothing' tal que $(\forall A \in \mathcal{P}(E))(\varnothing' \subseteq A)$ se tendría que $\varnothing R\varnothing'$ y al mismo tiempo $\varnothing'R\varnothing$ por lo que $\varnothing = \varnothing'$. (0.3 puntos)

(c) (0.8 puntos) Para n=3 se tiene que $E=\{1,2,3\}$ por lo tanto un diagrama de Hasse puede ser



(d)

- (i) **Relación de orden total.** Sean $A, B \in \mathcal{P}(E)$. Hay tres opciones
- |A| < |B|. (0.2 puntos) En este caso por definición de S se tiene que ASB.
- |B| < |A|. (0.2 puntos) En este caso por definición de S se tiene que BSA.
- |A| = |B|. En este caso hay dos opciones:
 - $\circ A = B$, (0.2 puntos) y en tal caso $A \leq B$ y por tanto ASB
 - o $A \neq B$. (0.4 puntos) En este último caso podemos asumir sin perder generalidad que los elementos de A y B están ordenados en forma creciente, es decir $A = \{x_1, x_2, \ldots, x_k\}$, con $x_1 < x_2 < \ldots < x_k$ y $B = \{y_1, y_2, \ldots, y_k\}$ con $y_1 < y_2 < \ldots < y_k$, dado que $A \neq B$ existe $i_0 \in \{1, 2, \ldots, k\}$ para el cual $(\forall i < i_0)(x_i = y_i)$ y $x_{i_0} \neq y_{i_0}$, de esta forma $x_{i_0} > y_{i_0}$ o bien $x_{i_0} < y_{i_0}$, si ocurre lo primero entonces A < B y por tanto ASB y si ocurre lo segundo entonces B < A y por tanto BSA.

En cualquiera de todos los casos, se tendrá que o bien ASB o BSA, lo que dice que S es un orden total. **Extensión.** Supongamos que A R B, es decir $A \subseteq B$. Hay dos opciones $A \subseteq B$ con $A \ne B$, en tal caso |A| < |B| y por tanto ASB (0.3 puntos) y el otro caso es que A = B en tal caso |A| = |B| y $A \le B$ por lo que también se tiene que ASB (0.2 puntos)

(ii) (0.8 puntos)

