

Control 1

P1. a) Sean p, q, r tres proposiciones lógicas. Considere la proposición lógica s dada por

$$(p \Longrightarrow q) \Longrightarrow [(q \Longrightarrow r) \Longrightarrow (p \Longrightarrow r)].$$

i) (1.5 ptos) Demuestre que la negación de s es

$$(p \implies q) \land (q \implies r) \land p \land \overline{r}.$$

Solución:

Sabemos que si a y b son dos proposiciones lógicas, se tiene que $\neg(a \implies b) \iff a \land \bar{b}$ (0.3 ptos.) Usando esta propiedad obtenemos que la negación de s es equivalente a

$$(p \implies q) \land \neg ((q \implies r) \implies (p \implies r).$$

(0.4 ptos.)

Usando nuevamente la negación de una implicancia, obtenemos que \bar{s} es equivalente a

$$(p \implies q) \land (q \implies r) \land \neg (p \implies r).$$

(0.4 ptos.)

Reemplazando la negación de la última implicancia, obtenemos finalmente que \bar{s} es equivalente a

$$(p \implies q) \land (q \implies r) \land p \land \overline{r}.$$

que es lo que deseábamos mostrar (0.4 ptos.).

ii) (1.5 ptos) Demuestre, sin usar tablas de verdad, que s es tautología.

Solución:

Primera forma. Podemos usar la parte anterior y demostrar que \overline{s} es una contradicción (0.3 ptos.) Supongamos que \overline{s} es V. Luego, las proposiciones $(p \implies q), (q \implies r), p, y \overline{r}$ son todas V (0.3 ptos.) De esto deducimos inmediatamente que r es F y que p es V (0.2 ptos.) Pero como $p \implies q$ es V, deducimos que q es V. Similarmente, como $q \implies r$ es V, obtenemos que r es V (0.3 ptos.) Esto contradice que r es F. Es decir \overline{s} debe ser F, con lo cual s es V. (0.4 ptos.)

Segunda forma. Usando el álgebra booleana. Reescribamos las implicancias usando la negación y el o lógico. Para facilitar la escritura, comencemos desarrollando la expresión $(q \implies r) \implies$

$(p \implies r)$.	Tenemos que:	
	$[(q \implies r) \implies (p \implies r)]$	
\iff	$\overline{(\overline{q}\vee r)}\vee(\overline{p}\vee r)$	def implica
\iff	$(q \wedge \overline{r}) \vee (\overline{p} \vee r)$	ley de De Morgan
\iff	$(q \vee \overline{p} \vee r) \wedge (\overline{r} \vee \overline{p} \vee r)$	distributividad
\iff	$(q \vee \overline{p} \vee r) \wedge (\overline{r} \vee r \vee \overline{p})$	conmutatividad de \vee
\iff	$(q ee \overline{p} ee r) \wedge (V ee \overline{p})$	$\overline{r} \lor r \iff V$
\iff	$(q \lor \overline{p} \lor r) \land V$	V es dominante para \vee
\iff	$(q ee \overline{p} ee r)$	V es neutro para \wedge
		(0.7 ptos.)
		(0.1 0.05.1
Reemplazane	do lo recién obtenido en s , obtenemos que	(0.1 ptos.)
Reemplazan	do lo recién obtenido en s , obtenemos que $(p \implies q) \implies [(q \implies r) \implies (p \implies r)]$	(0.1 ptos.)
Reemplazan		def de implicancia
	$(p \implies q) \implies [(q \implies r) \implies (p \implies r)]$	` -
\iff		def de implicancia
⇔ ⇔	$\begin{array}{c} (p \Longrightarrow q) \Longrightarrow [(q \Longrightarrow r) \Longrightarrow (p \Longrightarrow r)] \\ \hline (\overline{p} \lor q) \lor (q \lor \overline{p} \lor r) \\ (p \land \overline{q}) \lor (q \lor \overline{p} \lor r) \end{array}$	def de implicancia ley de De Morgan
⇔ ⇔ ⇔	$\begin{array}{c} (p \Longrightarrow q) \Longrightarrow [(q \Longrightarrow r) \Longrightarrow (p \Longrightarrow r)] \\ \hline (\overline{p} \lor q) \lor (q \lor \overline{p} \lor r) \\ (p \land \overline{q}) \lor (q \lor \overline{p} \lor r) \\ (p \lor q \lor \overline{p} \lor r) \land (\overline{q} \lor q \lor \overline{p} \lor r) \end{array}$	def de implicancia ley de De Morgan distributividad
⇔ ⇔ ⇔ ⇔ ⇔	$\begin{array}{c} (p \Longrightarrow q) \Longrightarrow [(q \Longrightarrow r) \Longrightarrow (p \Longrightarrow r)] \\ \hline (\overline{p} \lor q) \lor (q \lor \overline{p} \lor r) \\ (p \land \overline{q}) \lor (q \lor \overline{p} \lor r) \\ (p \lor q \lor \overline{p} \lor r) \land (\overline{q} \lor q \lor \overline{p} \lor r) \\ (p \lor \overline{p} \lor q \lor r) \land (\overline{q} \lor q \lor \overline{p} \lor r) \end{array}$	def de implicancia ley de De Morgan distributividad conmutatividad de ∨

(0.8 ptos.)

Tercera forma. Exploratoria. Para demostrar que la implicancia es una tautología, basta analizar el caso cuando $p \implies q$ es V y demostrar que $(q \implies r) \implies (p \implies r)$ también lo es **(0.5 ptos.)**. Del mismo modo, para esta última, basta considerar el caso cuando $q \implies r$ es V y mostrar que $p \implies r$ también lo es **(0.3 ptos.)**. Dado que por transitividad tenemos que $(p \implies q) \land (q \implies r) \implies (p \implies r)$ **(0.3 ptos.)**, se sigue que $p \implies r$ es V **(0.4 ptos.)**

b) Para x e y números enteros, sea P(x,y) la función proposicional

$$(x \le y) \implies (x^2 \le y^2).$$

i) (1.5 ptos) Determine el conjunto $\{x \in \mathbb{Z} \mid P(x,1) \text{ es } V\}$.

Solución: Notar que para $x \in \mathbb{Z}$, la proposición P(x,1) corresponde a

$$(x \le 1) \implies (x^2 \le 1).$$

(0.3 ptos.)

Primero notemos que si x > 1, entonces P(x, 1) es automáticamente V, al ser una implicancia con una hipótesis F (0.4 ptos.). Dentro de los enteros que satisfacen $x \le 1$, la condición $x^2 \le 1$ es V solo para x = 1, x = 0 y x = -1. Esto pues todos los enteros x menores o iguales que -2 tienen un cuadrado estrictamente mayor a 1, con lo cual la proposición ($x \le 1$) \Longrightarrow ($x^2 \le 1$) equivale a

 $V \Longrightarrow F$, que es F (0.5 ptos.). Así, el conjunto buscado es $\{x \in \mathbb{Z} \mid x \ge -1\} = \{-1, 0, 1, 2, \ldots\}$ (0.3 ptos.).

ii) (1.5 ptos) Determine el valor de verdad de

$$\forall x \in \mathbb{Z}, \forall y \in \mathbb{Z}, P(x, y).$$

Para ver que el valor de verdad es F, basta exhibir un par de números enteros para los cuales no se cumpla la implicancia (contraejemplo) (0.7 ptos.). Para x=-2 e y=1, se tiene que $x\leq 1$, pero $x^2>1$, por lo que $P(-2,1)\iff F$. (0.8 ptos.)

P2. a) (3.0 ptos) Sea x_n la secuencia definida por la recurrencia $x_0 = 2$, $x_1 = 3$ y $x_n = 3x_{n-1} - 2x_{n-2}$ para $n \ge 2$. Demuestre que $x_n = 1 + 2^n$ para todo $n \ge 0$.

Solución:

Haremos la demostración por inducción en la variable n. La propiedad que debemos probar que se satisface para todo $n \in \mathbb{N}$ es: $p(n) \iff x_n = 1 + 2^n$. Notando que en la recurrencia el término x_n no solamente depende de el término anterior (x_{n-1}) sino también del previo a aquel (x_{n-2}) , nuestra hipótesis de inducción corresponderá a la de la inducción fuerte $(p(0) \land p(1) \land \ldots \land p(n-1))$, y además el caso $p(0) \implies p(1)$ del paso inductivo tampoco podrá realizarse usando la fórmula de la recurrencia, por lo cual en el caso base revisaremos ambos, p(0) y p(1).

Caso base: (1.0 pto.)

Como dijimos, verificaremos p(0) y p(1).

 $p(0) \iff x_0 = 1 + 2^0 = 1 + 1 = 2$, lo que es verdadero por el enunciado.

Análogamente $p(1) \iff x_1 = 1 + 2^1 = 1 + 2 = 3$, también verdadero por el enunciado.

Paso inductivo: (2.0 ptos.)

Sólo nos queda ver que para todo $n \geq 2$, $p(0) \wedge p(1) \wedge \ldots \wedge p(n-1) \Longrightarrow p(n)$. Es decir, tratemos de demostrar el caso n usando los anteriores como hipótesis inductiva. A partir de la recurrencia, tenemos que $x_n = 3x_{n-1} - 2x_{n-2}$. Pero, por hipótesis de inducción, $x_{n-1} = 1 + 2^{n-1}$ (caso p(n-1)) y $x_{n-2} = 1 + 2^{n-2}$ (caso p(n-2)). Reemplazando entonces en la fórmula para x_n y efectuando algo de operatoria elemental, tenemos $x_n = 3 \cdot (1 + 2^{n-1}) - 2 \cdot (1 + 2^{n-2}) = 3 - 2 + 3 \cdot 2^{n-1} - 2 \cdot 2^{n-2} = 1 + 3 \cdot 2^{n-1} - 2^{n-1} = 1 + 2 \cdot 2^{n-1} = 1 + 2^n$, lo que concluye el paso inductivo.

b) (3.0 ptos) Sea E un conjunto de referencia y $A, B \subseteq E$. Pruebe que

$$B \setminus A = E \iff B = E \land A = \emptyset.$$

Solución:

Separaremos la equivalencia que se pide demostrar en dos implicaciones:

 $Si\ B \setminus A = E$, entonces $B = E \land A = \emptyset$:

(1.0 pto.) Veamos primero que B debe ser igual a E.

Como E es el conjunto de referencia, entonces claramente $B \subseteq E$, por tanto solo debemos probar es que $E \subseteq B$. Por contradicción, si este no fuese el caso, habría un elemento $x_0 \in E$ que no es elemento de B. Entonces x_0 tampoco sería elemento de $B \setminus A$ (recordemos que los elementos de $B \setminus A$ son elementos de B que no pertenecen a A). Y como, por hipótesis $B \setminus A = E$, entonces $x_0 \notin E$, lo que es una contradicción, y por lo tanto hemos demostrado lo que queríamos.

(1.0 pto.) Veamos ahora que A debe ser vacío.

Primera forma: Como ya sabemos que B=E, entonces la hipótesis se escribe $E\setminus A=E$, es decir $A^c=E$. Aplicando el complemento en ambos lados resulta $(A^c)^c=E^c$, lo que es $A=\emptyset$.

Segunda forma: Podemos también razonar por contradicción. Si suponemos que $A \neq \emptyset$, entonces A tendrá al menos un elemento x_0 (que también debe ser elemento de la referencia E). Por definición de diferencia, $x_0 \notin B \setminus A$. Pero como por hipótesis $B \setminus A = E$, entonces $x_0 \notin E$, lo que es una contradicción. Por lo tanto A debe ser \emptyset .

```
Si B = E \land A = \emptyset, entonces B \setminus A = E:
```

(1.0 pto.) Esta demostración se reduce al cálculo siguiente: $B \setminus A = E \setminus \emptyset = \emptyset^c = E$.

Solución alternativa de la parte b) (3 ptos.)

Usaremos acá solamente las definiciones de igualdad de conjuntos, diferencia de conjuntos, conjunto vacío, el hecho de que la referencia E es el conjunto tal que $x \in E$ es siempre verdadero, y la siguiente propiedad de cuantificadores: $(\forall x \in E, p(x) \land q(x)) \iff (\forall x \in E, p(x)) \land (\forall x \in E, q(x))$.

$$B \setminus A = E$$

$$\forall x \in E, (x \in B \setminus A \iff x \in E)$$

$$\Leftrightarrow \qquad \forall x \in E, (x \in B \land x \notin A \iff \mathbf{V})$$

$$\Leftrightarrow \qquad \forall x \in E, (x \in B \land x \notin A)$$

$$\Leftrightarrow \qquad (\forall x \in E, x \in B) \land (\forall x \in E, x \notin A)$$

$$\Leftrightarrow \qquad B = E \land A = \emptyset$$

Duración: 1 hora y 15 minutos.