Pauta Control 1

P1. a) (3 pts.) Sean p, q, r proposiciones arbitrarias. Demostrar sin usar tablas de verdad, que la siguiente proposición es una tautología

$$(p \Rightarrow q) \Longrightarrow [(\overline{q \land r}) \Rightarrow (\overline{p \land r})]. \tag{1}$$

Solución: Para trabajar con esta implicancia comenzaremos usando la conocida tautología: $a \Rightarrow b \Leftrightarrow \overline{a} \lor b$, para a, b proposiciones (caraterización de la implicancia). Luego esto en (1) nos conduce a

- $\Leftrightarrow \quad \overline{(\overline{p} \vee q)} \vee [\, \overline{(\overline{q \wedge r})} \vee (\overline{p \wedge r}) \,] \qquad \leftarrow \text{caracterización de la implicancia}$
- \Leftrightarrow $(p \land \overline{q}) \lor [(q \land r) \lor (\overline{p} \lor \overline{r})] \leftarrow \text{morgan y doble negación}$
- \Leftrightarrow $(p \land \overline{q}) \lor [\overline{r} \lor (q \land r)] \lor \overline{p}$ \leftarrow asociando y conmutando
- $\Leftrightarrow (p \wedge \overline{q}) \vee [(\overline{r} \vee q) \wedge (\overline{r} \vee r)] \vee \overline{p} \leftarrow \text{distribuyendo}$
- \Leftrightarrow $(p \land \overline{q}) \lor [(\overline{r} \lor q) \land V] \lor \overline{p} \leftarrow 3er excluído o tercio exclusivo$
- $\Leftrightarrow \quad \overline{p} \vee (p \wedge \overline{q}) \vee q \vee \overline{r} \qquad \leftarrow \text{identidad (o reducción) y conmutando}$
- $\Leftrightarrow \quad [(\overline{p} \vee p) \wedge (\overline{p} \vee \overline{q})] \vee q \vee \overline{r} \qquad \leftarrow \text{distribuyendo}$
- \Leftrightarrow $[V \land (\overline{p} \lor \overline{q})] \lor q \lor \overline{r} \longleftrightarrow 3er$ excluído o tercio exclusivo
- $\Leftrightarrow \quad \overline{p} \vee \overline{q} \vee q \vee \overline{r} \qquad \leftarrow \text{identidad (o reducción)}$
- $\Leftrightarrow \quad \overline{p} \vee V \vee \overline{r} \qquad \leftarrow 3 \text{er excluído o tercio exclusivo}$
- $\Leftrightarrow V \leftarrow \text{dominancia (o reducción)}.$

Obs: Es probable que para negación algún estudiante use \sim , tener en cuenta ello.

Distribución de puntajes:

- Asignar (0,4 pts.) por el 1er paso al aplicar las caracterización de la implicancia.
- (0,2 pts.) por cada paso con un sólo argumento y (0,4 pts.) por lo que usan dos propiedades, esto es el 2do, 3ero y el 6to.
- Esta es una forma de obtener el resultado, por ende se debe designar a criterio puntaje haciendo un símil siguiendo la distribución propuesta para la corrección.
- b) Sea E un conjunto de referencia con $E \neq \emptyset$, para $A \subseteq E$ considere la familia

$$\mathcal{M}_A = \{ B \in \mathcal{P}(E) : A \cap B = \emptyset \}.$$

Demostrar que Demostrar que

1) (0.3 pts.) $\emptyset \in \mathcal{M}_A$ y $A^c \in \mathcal{M}_A$.

Solución: Se sabe que $\emptyset \subset E$ y $A^c \subseteq E$ pues $A \subseteq E$. Ahora se tiene que $A \cap \emptyset = \emptyset$ y $A \cap A^c = \emptyset$, luego \emptyset y $A^c \in \mathcal{M}_A$ ambos.

Distribución de puntajes:

- Por la verificación pedida (0, 3 pts.).
- 2) (1.2 pts.) Las siguientes tres afirmaciones son equivalentes:
 - i) $A \in \mathcal{M}_A$
 - ii) $A = \emptyset$,
 - iii) $\mathcal{M}_A = \mathcal{P}(E)$

Además, indique para cuales $A \in \mathcal{P}(E)$ se tiene $\mathcal{M}_A = \{\emptyset\}$, Justifique su respuesta.

Solución: Hay al menos 2 formas de respuesta, una de ellas es ver las equivalencias i) \Leftrightarrow ii) , ii) \Leftrightarrow iii), el circuito se cierra por transitividad de la equivalencia (también puede ser i) \Leftrightarrow iii) y ii) \Leftrightarrow i)). Veamos el primer caso, si $A \in \mathcal{M}_A \Leftrightarrow A \in \mathcal{P}(E) \land A \cap A = \emptyset \Leftrightarrow A = \emptyset$, lo cual prueba i) \Leftrightarrow ii). Ahora si $A = \emptyset \Leftrightarrow \mathcal{M}_A = \{B \in \mathcal{P}(E) : \emptyset \cap B = \emptyset\} \Leftrightarrow \mathcal{M}_A = \mathcal{P}(E)$ luego se sigue la equivalencia ii) \Leftrightarrow iii), se concluye por transitividad. La otra forma es demostrar i) \Rightarrow ii) \land ii) \Rightarrow iii) \land iii) \Rightarrow i). Argumentando nuevamente por transitividad que se cierra el circuito. Finalmente para A = E se tiene que el único subconjunto B de E tal que $E \cap B = \emptyset$ es \emptyset , luego $\mathcal{M}_A = \{\emptyset\}$ en tal caso.

Distribución de puntajes:

- Asignar (0,4 pts.) por cada equivakencia y (0,2 pts.) por argumentar el cierre del circuito.
- En el segundo caso, asignar (0, 3 pts.) por cada implicancia (0, 1 pto.) por decir porque se cierra el circuito.
- Asignar (0, 2 pts.) por la pregunta final considerando el argumento.
- 3) (0.3 pts) $\forall B \in \mathcal{M}_A, \forall Y \in \mathcal{P}(E), B \cap Y \in \mathcal{M}_A$.

Solución: Sea $B \in \mathcal{M}_A$ y $Y \in \mathcal{P}(E)$ cualesquiera, se tiene $B \cap Y \subseteq E$ y $A \cap B \cap Y = \emptyset$ pues $A \cap B = \emptyset$ ya que $B \in \mathcal{M}_A$.

Distribución de puntajes:

- Asignar (0, 3 pts.) por el argumento completo.
- 4) (1.2 pts.) $(B \in \mathcal{M}_A) \land (C \in \mathcal{M}_A) \Rightarrow (B \setminus C) \cup (C \setminus B) \in \mathcal{M}_A$.

Solución: Supongamos que $B \in \mathcal{M}_A$ y $C \in \mathcal{M}_A$, veamos que $(B \setminus C) \cup (C \setminus B) \in \mathcal{M}_A$. En efecto, claramente $(B \setminus C) \cup (C \setminus B)$ está en $\mathcal{P}(E)$ y

$$A \cap [(B \setminus C) \cup (C \setminus B)] = (A \cap (B \setminus C)) \cup (A \cap (C \setminus B)) \quad \leftarrow \text{distribuyendo}$$

$$= (A \cap B \cap C^c) \cup (A \cap C \cap B^c) \quad \leftarrow \text{usando } X \setminus Y = X \cap Y^c$$

$$= (\emptyset \cap C^c) \cup (\emptyset \cap B^c) \quad \leftarrow \text{pues } B \in \mathcal{M}_A \text{ y } C \in \mathcal{M}_A$$

$$= \emptyset.$$

Distribución de puntajes:

- Asignar (0,1 pto.) por el primer argumento antes de calcular.
- Asignar (0,3 pts.) por cada igualdad de la 1era a la 3era y (0,2 pts.) por el paso final.

P2.- a) (3 pts.) Probar, usando el principio de inducción matemática, que todo número natural $n \ge 8$ puede escribirse en la forma:

$$n = 3p + 5q,$$

donde $p, q \in \mathbb{N}$. **Obs**: $0 \in \mathbb{N}$.

Solución:

Caso base:

Si n = 8 basta tomar p = q = 1 tenemos $8 = 3 \cdot 1 + 5 \cdot 1$

Hipótesis inductiva:

para todo $k \in \mathbb{N}, 8 \le k \le n$ tenemos que existen $p, q \in \mathbb{N}, n = 3p + 5q$

Por demostrar: n+1=3p+5q $p,q\in\mathbb{N}$ Escribiendo el 1 de forma conveniente, tenemos:

$$1 = 9 - 8$$
, $8 = 3 + 5$ y $9 = 3 \cdot 3 + 0 \cdot 5$

 $n+1=n+3\cdot 3+0\cdot 5-3-5=3p+5q+3\cdot 3-3-5$ es decir: 3(p+2)+5(q-1)

Si $q \geq 1$ hemos demostrado la proposición, ya que $(p+2) \in \mathbb{N}$ y $(q-1) \in \mathbb{N}$

si q=0 debemos escribir el 1 de otra forma conveniente, por ejemplo $10-9=5\cdot 2-3\cdot 3$

Luego $n+1=3p+5q+5\cdot 2-3\cdot 3=3(p-3)+5(q+2)$ Cabe decir que como en este caso q=0 el menor número con el que estamos trabajando para n es 9, lo que implica $q\geq 3$. y $(p-3)\in \mathbb{N}, (q+2)=2\in \mathbb{N}$.

Lo que termina la demostración.

Distribución de puntajes:

- (1 pto.) Por realizar el caso base.
- (0,5 pto.) Por plantear la hipótesis inductiva.
- (1 pto.) Por demostrar bien al menos uno de los dos casos (podría pasar que no se

den cuenta de que uno de los números p o q puede quedar negativo, lo que no implica necesariamente que no entiendan inducción.)

- (0,5 pto.) Por demostrar el otro caso correctamente, dado que ya hicieron el primero, que puede ser cualquiera de los dos.
- b) Dada una funión $f: \mathbb{N} \longrightarrow \mathbb{N}$, diremos que f cumple la propiedad P si:

$$\forall n, m \in \mathbb{N}, m \neq 0 \Rightarrow f(n) < f(n+m).$$

1) (1 pto.) Pruebe que toda función $f: \mathbb{N} \longrightarrow \mathbb{N}$, que cumple la propiedad P es inyectiva.

Solución:

Sean $n, m \in \mathbb{N}$ arbitrarios, supongamos f(n) = f(m) si esto implica que n = m la demostración está lista.

Supongamos que son diferentes, sin pérdida de generalidad m>n luego $m=n+k, k\in\mathbb{N}$

Por hipótesis sabemos que f(n) < f(n+k) lo que nos lleva a contradecir que eran iguales.

Por lo que f es inyectiva.

Distribución de puntajes:

- (1 pts.). Por demostrar correctamente la inyectividad, de esta forma o de forma directa.
- 2) (1 pto.) Si $f: \mathbb{N} \longrightarrow \mathbb{N}$ cumple la propiedad P, ξ es necesariamente epiyectiva?. Demuestre su respuesta en caso de ser afirmativa o exhiba un contraejemplo.

Solución:

 \boldsymbol{f} no es necesariamente epiyectiva, por ejemplo:

 $f:\mathbb{N}\longrightarrow\mathbb{N}$

f(n) = n + 1 Cumple la propiedad P Dado que $n + 1 < n + m + 1, \forall m \in \mathbb{N} - \{0\}$ Y $\forall n \in \mathbb{N}, f(n) \neq 0$.

Distribución de puntajes:

- (0,5 pts.). Por encontrar un ejemplo no epiyectivo.
- (0, 5 pts.). Por mostrar que hay un número que no pertenece a la imagen de f (no hace falta que usen la palabra imagen, dado que no entraba en el control.
- 3) (1 pto.) Pruebe que si $f: \mathbb{N} \longrightarrow \mathbb{N}$ cumple la propiedad P y es epiyectiva, entonces $f = \mathrm{Id}_{\mathbb{N}}$

Solución: Supongamos que $f \neq \operatorname{Id}_{\mathbb{N}}$, entonces existe el menor $n \in \mathbb{N}$ tal que $f(n) \neq n$, demostraremos que entonces f(n) > n+1 y que para todo $k \in \mathbb{N}$, $f(k) \neq n$ Sea f(n) = m como $\forall k < n, f(k) = k$ tenemos en particular que f(n) > f(n-1) = n-1 $n-1 < f(n) \neq n$ implica que f(n) > n+1 además $\forall m > n$ por la propiedad P, f(m) = f(n+k) > f(n)

Como $n \in \text{Cod}(f)$ y hemos demostrado que ningún $m \in \mathbb{N}$ cumple que f(m) = n Luego f no es epiyectiva, o es la identidad.

Distribución de puntajes:

- (0, 2 pts.). Por suponer que hay un número en el que $f(n) \neq n$ que funcione spara la contradicción.
- (0,5 pts.). Por ver que entonces n no estará en la imagen (insisto, no entra en el control imagen y preimagen, con lo que lo explicarán con otras palabras, si usan la palabra imagen no castigar.
- (0, 3 pto.). Por concluir correctamente.
