

Control recuperativo

P1. a) (3.0 pts) Sea P(x), para $x \in \mathbb{R}$, la función proposicional

$$\forall y \in [0,1], y \le x \implies 2y \le 1.$$

Determine el conjunto $\{x \in \mathbb{R} \mid P(x) \text{ es } V\}.$

b) (3.0 pts) Considere la función $f: \mathbb{R}_+ \to \mathbb{R}_+$ dada por f(x) = x/(x+1) para todo $x \in \mathbb{R}_+$ y sea g_n el resultado de componer f n-veces, es decir, $g_1 = f$, $g_2 = f \circ f$, y en general $g_n = \underbrace{f \circ f \cdots \circ f}_{f \text{ aparece } n \text{ veces}}$ para $n \ge 1$.

Demuestre que

$$g_n(x) = \frac{x}{nx+1}$$
 para todo $n \ge 1$.

- **P2.** a) Sea $f: A \to B$ una función epiyectiva y sea $g: B \to A$ una función tal que $g(b) \in f^{-1}(\{b\})$ para todo $b \in B$. a.i) (2.0 pto) Muestre que $f \circ g = \mathrm{id}_B$ y concluya que g es inyectiva.
 - a.ii) (1.5 pto) Con un ejemplo, muestre que g no es necesariamente epiyectiva.
 - b) (2.5 pts) Sean A y B dos conjuntos no vacíos y $h:A\to B$ una función. Suponga que existe $A'\subseteq A$ tal que

$$A' \cap h^{-1}(B') \neq \emptyset$$
 para todo $B' \subseteq B$.

Demuestre que h(A') = B y concluya que h es epiyectiva.

Duración: 2 horas.