

Control Recuperativo 2

P1. a) (3 pts.) Calcule, sin usar inducción, la siguiente sumatoria

$$\sum_{k=0}^{n} \sum_{j=0}^{k} {k \choose j} (5^{j} + 8^{k-j}).$$

b) (1,5 pts.) Calcule el cardinal del conjunto A definido como los subconjuntos de $\{1,2,3,4,5\}$ que contienen a 1, es decir, calcule el cardinal de

$$A = \{X \in \mathcal{P}(\{1, 2, 3, 4, 5\}) \mid 1 \in X\}.$$

- c) (1,5 pts.) Sea (G,*) un grupo y sea $y \in G$ fijo. Demuestre que la función $f: G \to G$ dada por $f(x) = y*x*y^{-1}$ es un homomorfismo de (G,*) en (G,*).
- **P2.** a) Sea $\mathbb{R}_+^* = \{x \in \mathbb{R} \mid x > 0\}$. Se define la operación \triangle en $\mathbb{R}_+^* \times \mathbb{R}$ mediante

$$(a,b) \triangle (c,d) = (ac,ad+b).$$

Se sabe (no lo demuestre) que \triangle es asociativa.

- i) (1 pto.) Demuestre que la operación \triangle tiene neutro y encuéntrelo.
- ii) (1 pto.) Dado $(a, b) \in \mathbb{R}_+^* \times \mathbb{R}$, encuentre, de existir, su inverso para \triangle .
- iii) (1 pto.) Determine si la operación \triangle es conmutativa.
- b) Considere los complejos $z_1 = 1 + i\sqrt{3}$ y $z_2 = 1 + i$.
 - i) (1 pto.) Escriba el complejo $w=z_1/z_2$ en forma cartesiana.
 - ii) (1 pto.) Escriba el complejo $w=z_1/z_2$ en forma polar.
 - iii) (1 pto.) Concluya que $\cos(\pi/12)=\frac{\sqrt{3}+1}{2\sqrt{2}}$ y que $\sin(\pi/12)=\frac{\sqrt{3}-1}{2\sqrt{2}}.$

Duración: 1h 30'.