

Control recuperativo

- **P1.** a) Considere las siguientes proposiciones.
 - (i) $\forall n \in \mathbb{N}, \ n^2 1$ es un número primo.
 - (ii) $\exists n \in \mathbb{Z}, \ \mathbb{Z} \setminus \{n\} = \mathbb{Z}.$
 - a.1) (2.5 pts) Determine el valor de verdad de cada una, justificando claramente su respuesta.
 - a.2) (1.5 pts) Niegue las proposiciones anteriores.
 - b) (2.0 ptos) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la función definida por f(x,y) = (2x y, -x + y). Demuestre que f es biyectiva y determine su inversa.
- **P2.** Sean $A, B \neq \emptyset$, \mathcal{R} una relación de equivalencia en A y \mathcal{S} una relación de equivalencia en B.
 - a) (3.0 ptos) Demuestre que la relación \mathcal{T} definida en $A \times B$ mediante:

$$(a,b)\mathcal{T}(x,y) \iff a\mathcal{R}x \wedge b\mathcal{S}y,$$

es de equivalencia.

- b) (3.0 ptos) Sean $a \in A$ y $b \in B$. Anotemos por:
 - $[a]_{\mathcal{R}}$ la clase de equivalencia de a respecto a la relación \mathcal{R} ,
 - $[b]_{\mathcal{S}}$ la clase de equivalencia de b respecto a la relación \mathcal{S} , y
 - $[(a,b)]_{\mathcal{T}}$ la clase de equivalencia de (a,b) respecto a la relación \mathcal{T} .

Demuestre que:

$$[(a,b)]_{\mathcal{T}} = [a]_{\mathcal{R}} \times [b]_{\mathcal{S}}.$$

Duración: 1 hora y 30 minutos.