

Introducción al Álgebra MA1101

Control Recuperativo 3

- **P1.** Se define $C = \{S \subseteq \mathbb{N} : |S| < |\mathbb{N}|\}$, y se definen dos subconjuntos de C: el conjunto C_1 contiene a todos los $S \in C$ con |S| impar, y el conjunto C_2 contiene a todos los $S \in C$ con |S| par. También se define $C_0 = \{S \in C : 0 \in S\}$.
 - (a) (2 ptos) Muestre que $|\mathcal{C}_1 \setminus \mathcal{C}_0| = |\mathcal{C}_2 \cap \mathcal{C}_0|$.
 - (b) (2 ptos) Muestre que $|\mathcal{C}_2 \cap \mathcal{C}_0| = |\mathcal{C}_2 \setminus \mathcal{C}_0|$.
 - (c) (2 ptos.) También se tiene $|\mathcal{C}_1 \cap \mathcal{C}_0| = |\mathcal{C}_1 \setminus \mathcal{C}_0| = |\mathbb{N}|$ (no se pide probar esto). Usando estas igualdades y usando (i) e (ii), muestre que $|\mathcal{C}| < |\mathcal{P}(\mathbb{N})|$.

Indicación:

- (a) y (b): Notar que por ejemplo, $\{1,4,11\} \in \mathcal{C}_1 \setminus \mathcal{C}_0$, $\{0\} \cup \{1,4,11\} = \{0,1,4,11\} \in \mathcal{C}_2 \cap \mathcal{C}_0$ y $\{0+1,1+1,4+1,11+1\} = \{1,2,5,12\} \in \mathcal{C}_2 \setminus \mathcal{C}_0$.
- (c): Recordar que, para todo par de conjuntos A, B se tiene que $B = (B \setminus A) \cup (B \cap A)$.
- **P2.** Consideramos $(\mathbb{Z}_8 \times \mathbb{Z}_5, +)$, el producto cartesiano de los grupos $(\mathbb{Z}_8, +_8)$ y $(\mathbb{Z}_5, +_5)$.
 - (a) Sea $f: \mathbb{Z}_{40} \to \mathbb{Z}_8 \times \mathbb{Z}_5$ dada por $f([x]_{40}) = ([x]_8, [x]_5)$. Muestre que f es un isomorfismo, es decir, muestre que
 - (i) (1 pto) f es un homomorfismo.
 - (ii) (3 ptos) f es biyectiva.
 - (b) Considera el subgrupo $H = \{([i]_8, [0]_5) : i = 0, 2, 4, 6\}.$
 - (i) (1 pto) Determine a + H, la traslación a la izquierda de H por a, donde $a = ([3]_8, [3]_5)$.
 - (ii) (1 pto) Sea $\mathcal{T} = \{a + H : a \in \mathbb{Z}_8 \times \mathbb{Z}_5\}$. Determine $|\mathcal{T}|$.
- **P3.** Sea $(A, +, \cdot)$ un anillo.
 - a) (2 ptos) Muestre que A es conmutativo si y solamente si

para todo
$$a, b \in A$$
 se tiene que $(a+b)^2 = a^2 + 2 \cdot ab + b^2$. (1)

- b) (1 pto) Muestre que si A es conmutativo y tiene la propiedad que todo $a \in A$ es cancelable, entoncas A es un dominio de integridad.
 - (Nota: Esto es consecuencia de una proposición del apunte, en el case que recuerde la demostración, la puede repetir.)
- c) (3 ptos) Sea $n \in \mathbb{N}$, y sea $f : A \to \mathbb{Z}_n$ un isomorfismo de anillos. Sea 1_A la unidad de A. Muestre que para cada elemento $a \in A$ existe un $k \in \mathbb{N}$ tal que $a = k \cdot 1_A$.

Indicación para a) y c): Recordar que para todo anillo $(X, +, \cdot)$, y todo $x \in X$ se definió lo siguiente: $1 \cdot x = x$ y $k \cdot x = x + (k-1) \cdot x$ para $k \in \mathbb{N}^*$ (en particular $2 \cdot x = x + x$), y también $x^2 = x \cdot x$. Además, se puede usar la siguiente propiedad (sin necesidad de probarla): Si $g : B \to C$ es un homomorfismo de anillos y $b \in B$, se tiene que $f(j \cdot b) = j \cdot f(b)$.