

CONTROL RECUPERATIVO C2

P1. a) (2pts) Sean $A \neq \emptyset$, un conjunto con al menos dos elementos. Considere la función

$$f: A \times A \longrightarrow \mathcal{P}(A) \times \mathcal{P}(A)$$

 $(a,b) \longrightarrow (\{a,b\},\{b\})$

¿Es inyectiva? ¿Sobreyectiva? ¿Biyectiva? Justifique adecuádamente su respuesta.

- b) (2pts) Sean $f:A\to A,\ g:A\to A$ dos funciones. Demuestre que $[\ f\circ g\ \text{inyectiva}\ \land g\ \text{sobreyectiva}\]\Longrightarrow f\ \text{inyectiva}\ .$
- c) (2pts) Sea $A \neq \emptyset$ una familia de conjuntos que cumple las siguientes propiedades:
 - I) $\emptyset \in \mathcal{A}$
 - II) $[B \in A \land C \in A] \Longrightarrow B \cup C \in A$.

Además, dado un $H \in \mathcal{A}$, se define la familia de conjuntos

$$\mathcal{A}_H = \{ X \cap H \mid X \in \mathcal{A} \},\$$

en palabras, un conjunto Y pertenece a \mathcal{A}_H sí y solo sí se puede escribir como la intersección de algún elemento de \mathcal{A} con H.

Demuestre que \mathcal{A}_H cumple las mismas 2 propiedades enunciadas. Es decir, que:

- I) $\emptyset \in \mathcal{A}_H$
- II) $[B \in \mathcal{A}_H \land C \in \mathcal{A}_H] \Longrightarrow B \cup C \in \mathcal{A}_H.$

TIEMPO: 0:45 hrs.

No olvidar colocar nombre y RUT en todas las hojas de sus respuestas.

Mucho éxito!