CONTROL RECUPERATIVO

P1. Se define \mathcal{R} relación en $\mathbb{N} \times \mathbb{N}$ dada por

$$\forall (n,m), (p,q) \in \mathbb{N} \times \mathbb{N} : (n,m)\mathcal{R}(p,q) \iff m-n=q-p.$$

- a) (3 pts.) Demuestre que \mathcal{R} es una relación de equivalencia.
- b) (1,5 pts.) Sea $[(0,0)]_{\mathcal{R}}$ la clase de (0,0), muestre que $[(0,0)]_{\mathcal{R}} = \{(p,p) : p \in \mathbb{N}\}.$
- c) (1,5 pts.) Pruebe que $[(0,0)]_{\mathcal{R}}$ es un conjunto numerable.
- **P2.** a) 1) (1 pto.) Probar, sin uso de inducción (es decir por cálculo directo) que

$$\forall n \in \mathbb{N}, n \ge 1: \quad \sum_{k=2}^{n+1} \binom{k}{2} = \binom{n+2}{3}. \tag{1}$$

Ind: Recordar que $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

- 2) (1 pto.) Demuestre ahora (1) usando inducción.
- b) En $G = \mathbb{Q} \setminus \{0\} \times \mathbb{Q}$ se define la l.c.i * por $(p,q) * (r,s) = (p \cdot r, p \cdot s + q)$, donde + y · son las operaciones usuales en \mathbb{Q} . Se sabe (no lo demuestre) que * es asociativa en G.
 - 1) (0,5 pts.) Encontrar (n_1, n_2) neutro para * en G.
 - 2) (1,5 pts.) Para cada $(p,q) \in G$ determine su inverso (p',q') para *. ¿Es (p',q') único?, explique.
 - 3) (0.5 pts.) Investigar si * es conmutativa en G.
 - 4) (1,5 pts.) Para $b \in \mathbb{Q}$ fijo, se define la función $f: (G,*) \to (G,*)$ dada por f(p,q) = (p,bq) para cada $(p,q) \in G$. Demuestre que f es un homomorfismo.

TIEMPO: 1 hora 30 minutos.

No olvidar colocar nombre y RUT identificando sus hojas de respuestas.